Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [32]
В качестве последнего примера приведу тот, который озадачивал меня в школьные годы, прошедшие под знаком англиканской церкви: рассмотрим те три дня, которые Иисус Христос пролежал в могиле перед тем, как воскреснуть в согласии со своим собственным пророчеством: «После трех дней воскресну». Трех дней? Он был распят в пятницу — Страстную пятницу. Воскресение состоялось в воскресенье. Это составляет 48 часов, если измерять, но, разумеется, три дня (пятница, суббота, воскресенье), если считать, как и поступали те эллинизированные интеллектуалы, которые составили Новый Завет.[47]
Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.
Гипотеза Римана родилась из столкновения, названного в заглавии данной главы великим соединением, между логикой подсчета и логикой измерения. Выражаясь точным математическим языком, она возникла, когда некоторые идеи из арифметики были скомбинированы с некоторыми идеями из анализа и образовалась новая штука, новая ветвь на древе математики — аналитическая теория чисел.
Вспомним традиционные категории математики, о которых мы говорили в главе 1.viii.
1. Арифметика — наука о целых числах и дробях.
2. Геометрия — наука о фигурах в пространстве.
3. Алгебра — использование абстрактных символов для представления математических объектов (чисел, линий, матриц, преобразований) и изучение правил, по которым эти символы можно комбинировать.
4. Анализ — наука о пределах.
Эта четырехчленная схема закрепилась в людских головах около 1800 года, а великое соединение, которое я собираюсь описать в данной главе, было соединением идей, до 1837 года существовавших каждая сама по себе под двумя из приведенных вывесок — арифметики и анализа. Это соединение создало такую дисциплину, как аналитическая теория чисел.
Сегодня мы достаточно искушены в подобных взлетах воображения, и они, возможно, чуть лучше нам удаются. В действительности на сегодняшний день наряду с аналитической теорией чисел существуют алгебраическая теория чисел и геометрическая теория чисел. (Мы дойдем до некоторых элементов алгебраической теории чисел в главе 20.v.) Но в 30-х годах XIX столетия соединение концепций из двух областей, до того считавшихся не связанными друг с другом, несколько ошарашивало. Однако, прежде чем можно будет познакомить вас с главным действующим лицом в этой части нашей истории, надо сказать еще кое-что о тех двух дисциплинах, которые он друг с другом соединил.
В то время, о котором у нас идет речь, — в начале XIX столетия — анализ оставался самой новой и самой привлекательной частью математики, где совершались великие достижения и где работали самые проницательные умы. К концу столетия об арифметике, геометрии и алгебре было известно больше, чем в начале, но об анализе — намного больше. В самом же начале того столетия основную концепцию анализа — концепцию предела — ясно не представляли себе и лучшие умы. Если бы вы спросили Эйлера или даже молодого Гаусса, о чем идет речь в анализе, они сказали бы: «О бесконечном и инфинитезимальном». Но если бы вы вслед за тем спросили Эйлера, а что же в точности означает «бесконечное», он бы разразился приступом кашля и ушел из комнаты или же развернул дискуссию о значении слова «означает».
Анализ на самом деле ведет свое начало от изобретения дифференциального и интегрального исчисления Ньютоном и Лейбницем в 70-х годах XVII века. Без сомнения, идея предела — идея, разграничивающая анализ и остальную математику, — имеет фундаментальное значение для дифференциального и интегрального исчисления. Если вы хоть раз сидели в аудитории на лекции по математическому анализу, то у вас, возможно, остались смутные воспоминания о графике, на котором изображены кривая и пересекающая ее в двух точках прямая. «А теперь, — говорит лектор, — если вы будете сдвигать эти точки все ближе друг к другу, то в пределе…» — а остальное вы позабыли.
Дифференциальное и интегральное исчисление не составляют всего анализа: расходимость гармонического ряда — это теорема из анализа, но она не относится к дифференциальному и интегральному исчислению, которых просто не было в те времена, когда жил Никола Орем. Имеются и другие достаточно обширные области анализа, которые, строго говоря, не относятся к дифференциальному и интегральному исчислению. Теория меры, например, развитая Анри Лебегом в 1901 году, а также солидный кусок теории множеств. Тем не менее мне кажется справедливым сказать, что даже новейшие области анализа, не связанные с дифференциальным и интегральным исчислением, были открыты в связи с идеей совершенствования последнего: в случае Лебега — в связи с совершенствованием определения интеграла.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.