Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике - [14]

Шрифт
Интервал

Этим результат и доказан, поскольку наименьший собственный делитель любого числа с необходимостью является простым, ведь иначе в нем в свою очередь нашелся бы меньший делитель. Скажем, если N есть 5, то 1×2×3×4×5 + 1 есть 121, и наименьший простой делитель этого числа равен 11. С какого бы простого числа вы ни начали, вы получите большее простое. (Другое доказательство бесконечности числа простых чисел я дам в главе 7.iv, после того как покажу вам Золотой Ключ.)

При том что этот вопрос удалось урегулировать на столь раннем этапе истории математики, следующей по очереди вещью, естественным образом занимавшей головы математиков, была такая проблема: можно ли найти правило, закон для описания того, как именно истончаются простые числа? В пределах сотни имеется 25 простых чисел. Если бы простые числа были распределены строго равномерно, то, разумеется, в пределах тысячи их было бы в 10 раз больше, т.е. 250. Но из-за истончения там в действительности только 168 простых. Почему 168? Почему, скажем, не 158, или 178, или еще сколько-нибудь? Существует ли правило, формула, говорящая, сколько имеется простых чисел, меньших данного числа?

Вот мы и пришли к тому вопросу, с которого, как и Бернхард Риман, мы начали: сколько имеется простых чисел, меньших заданного числа?


III.

А что мы можем выяснить, действуя «от готового»? Я на самом деле знаю ответы на последний вопрос для довольно внушительных чисел. Некоторые из них показаны в таблице 3.1.

NСколько простых, меньших, чем N?
1 000168
1 000 00078 498
1 000 000 00050 847 534
1 000 000 000 00037 607 912 018
1 000 000 000 000 00029 844 570 422 669
1 000 000 000 000 000 00024 739 954 287 740 860

Таблица 3.1.

Здорово, конечно, но на самом деле не слишком информативно. Да, простые числа истончаются. Если бы они продолжали появляться в том же темпе, что и в первой тысяче, где их 168, то в последней графе их было бы что-то около 168 000 000 000 000 000. Но там в действительности лишь одна седьмая этого значения.

Сейчас я покажу фокус, который прольет немного света на эту туманную картину. Но сначала два слова о функциях.


IV.

Двухколоночная табличка вроде таблицы 3.1 иллюстрирует понятие функции. «Функция» — одна из важнейших концепций во всей математике, вторая или третья по значимости, на мой взгляд, после «числа» и, возможно, «множества». Основная идея функции состоит в том, что некоторое число (из правой колонки) зависит от другого числа (из левой колонки) в соответствии с некоторым заданным законом или процедурой. Конкретно для таблицы 3.1 процедура такова: «Посчитать, сколько имеется простых чисел в пределах, определяемых числом в левой колонке».

Другой способ сказать то же самое таков: функция — это способ превратить (математики говорят «отобразить») число в другое число. Функция в таблице 3.1 согласно выбранной процедуре превращает, или отображает, число 1000 в число 168.

Профессиональные термины здесь таковы. Поскольку слишком утомительно постоянно произносить слова «число в левой колонке» и «число в правой колонке», математики говорят о них соответственно как об «аргументе» и «значении» (или «значении функции»). Итак, суть дела во всякой функции — это получить значение по заданному аргументу, следуя некоторому правилу или процедуре.

И еще один ключевой профессиональный термин. Бывает, что правило, на котором основано определение функции, можно применить к одним числам или к одному типу чисел, но не к другим или другому. Скажем, правило «вычесть из аргумента единицу и взять обратное число» определяет весьма уважаемую функцию — математик сказал бы, что это функция 1/(1 − x), и мы довольно плотно с ней познакомимся в главе 9.iii, — но это правило нельзя применить к аргументу 1, поскольку такая попытка повлекла бы за собой деление на нуль, чего в математике не разрешается. (Нет никакого толка спрашивать: «А что если я попробую?» Нельзя, и все. Это против правил. Если вы попытаетесь, то игра остановится и все вернется в последнюю разрешенную позицию.)

В качестве другого примера рассмотрим функцию, действующую по правилу «посчитать, сколько делителей имеет аргумент». Мы видим, что число 28 имеет шесть делителей (будем сейчас включать и тривиальные делители тоже), а 29 — только два. Значит, данная функция превращает 28 в 6, а 29 (как и любое другое простое число) в 2. Это еще одна уважаемая и полезная функция, как правило, обозначаемая как d(N). Однако эта функция осмысленна только для целых чисел — и даже только для положительных целых чисел. Сколько делителей у числа 12>7/>8? Сколько делителей у числа π? Не спрашивайте. Эта функция — не для них.

Относящийся сюда профессиональный термин — это «область определения». Область определения какой-нибудь функции — это те числа, которые она допускает в качестве аргумента. Функция 1/(1 − x) допускает в качестве аргумента все числа, кроме 1. Функция d(N) допускает в качестве аргумента любое положительное целое число; это и есть ее область определения. Область определения функции √x — все неотрицательные числа, поскольку из отрицательных извлекать квадратный корень нельзя (впрочем, по этому поводу я оставляю за собой право передумать далее по тексту).


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.