Принцесса или тигр? - [72]

Шрифт
Интервал

, номер программы которой k совпадает с номером программы машины U, причем машина М>k и есть сама машина U! (В строгой научной статье я указал бы, что это за число k.)

Можно заметить, что наша универсальная машина М>k наблюдает в числе прочих и за своим собственным поведением. Поэтому, как только машина М>k напечатает число n, она должна напечатать число k*n, а значит, и число k*(k*n), а также и число k*[k*(k* n)] и т. д.

Другой важной особенностью этих машин является то, что, имея произвольную машину М>a, мы всегда можем запрограммировать другую машину М>b таким образом, чтобы она печатала в точности такие числа х, при которых машина М>a печатает числа х*х. (Машина М>b, так сказать, «следит» за машиной М>a и действует но такой команде: напечатать число x после того, как машина М>a напечатает число x*x.) Можно, наконец, закодировать программы так, что для каждого а таким числом b окажется число 2а; тогда для каждого а машина М>2a будет печатать в точности такие числа х, при которых машина М>a печатает числа x*x. Представим себе, что мы так и устроили, и запишем два основных утверждения, на которые будем опираться в дальнейшем.

Утверждение 1. Универсальная машина U печатает число x*у, если и только если машина М>x печатает число у.

Утверждение 2. Для каждого числа а машина М>2a печатает число х, если и только если машина М>a печатает число x*x.

Вот теперь мы подходим к самому главному. Оказывается, что любую формальную математическую задачу можно сформулировать в виде вопроса: напечатает машина М>a число b или не напечатает? Иначе говоря, для любой данной формальной системы аксиом можно всем утверждениям системы приписать определенные гёделевы номера, после чего найти такое число a, при котором машина М>a будет печатать гёделевы номера всех доказуемых утверждений данной системы и никаких других номеров печатать не будет. Поэтому, для того чтобы узнать, доказуемо или недоказуемо данное утверждение в исходной системе аксиом, мы берем его гёделев номер b и задаемся вопросом: напечатает ли машина М>a число b или не напечатает? Значит, если бы у нас существовал какой-то эффективный алгоритм, позволяющий определять, какие машины печатают те или иные числа, то мы вполне могли бы решить, какие утверждения доказуемы в той или иной системе аксиом. В этом, собственно, и заключалось бы осуществление мечты Лейбница. Более того, вопрос — какие машины печатают те или иные числа, может быть сведен к вопросу — какие числа печатает универсальная машина U, потому что вопрос, напечатает ли машина М>a число b, равносилен вопросу, напечатает ли машина U число а*b. Поэтому полное познание машины U означает полное познание всех машин, а следовательно, и всея математических систем. И наоборот, любой вопрос том, напечатает ли некая машина заданное число; может быть сведен к вопросу о том, доказуемо ли то или иное утверждение в определенной математической системе. Таким образом, полное познание всех формальных математических систем означает полное познание нашей универсальной машины.

Итак, главный вопрос, стоящий перед нами, можно сформулировать следующим образом. Пусть V — множество чисел, которые может напечатать универсальная машина U (это множество иногда называют универсальным множеством). Разрешимо множество V или нет? Если оно разрешимо, то мечта Лейбница осуществима; если же нет, то его стремления никогда не смогут быть реализованы. Поскольку V эффективно перечислимо (ведь оно генерируется машиной U), то вопрос сводится к тому, существует ли некая машина М>a, которая сможет напечатать дополнение V, а именно множество . Иначе говоря, существует ли такая машина М>a, которая печатает те и только те числа, которые машина U не печатает? На этот вопрос можно дать исчерпывающий ответ лишь на основании утверждений 1 и 2, о которых мы упоминали выше.

Теорема L. Множество не является эффективно перечислимым: для любой заданной машины М>a либо существует какое-то число, принадлежащее множеству , которое машина М>a не может напечатать, либо машина М>a напечатает по крайней мере одно число, которое принадлежит не множеству , а множеству V.

Сумеет ли читатель доказать теорему L?

Рассмотрим также следующий частный случай. Пусть у нас имеется утверждение о том, что машина М>5 перечислила множество . Чтобы опровергнуть это утверждение, достаточно отыскать некоторое число n, показав при этом, что либо оно принадлежит множеству , но не может быть напечатано машиной М>5, либо оно не принадлежит множеству V, но машина М>5 может его напечатать. Сумеете ли вы найти такое число n?

Я приведу решение этой задачи сразу, а не в конце главы, — по существу, это решение просто повторяет доказательство Гёделя.

Итак, возьмем произвольное число а. Согласно утверждению 2, машина М>a напечатает число x*x, если и только если машина М>2a напечатает число х. Но, согласно утверждению 1, машина М>2a напечатает число х, если и только если универсальная машина U напечатает число 2а*х, или, что то же самое, если число 2а*х принадлежит множеству V. Следовательно, машина М>a напечатает число x*x, если и только если число 2


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.