Принцесса или тигр? - [53]

Шрифт
Интервал

порождает число Y2Y2. Но поскольку X порождает Y, то число 4X порождает число Y⃖ (в соответствии с правилом MIII); значит, число 64X порождает число 2Y⃖ (в соответствии с правилом МII). Отсюда следует, что число 464X порождает число Y2 (в соответствии с правилом MIII), и, стало быть, число 5464X порождает число Y2Y2 (в соответствии с правилом MIV). Итак, мы получили, что если X порождает Y, то число НХ в самом деле порождает число Y2Y2.

Теперь, когда число Я найдено, выберем число N равным Н2Н2, в результате мы получим число 5464254642, которое порождает само себя. (Читатель может легко убедиться в этом самостоятельно.)

Но раз число 5464254642 порождает само себя, то, значит, это и есть кодовый номер той комбинации, которая открывает замок сейфа. Ясно, что указанная комбинация имеет вид RVLVQRVLVQ.

Конечно, задачу о сейфе из Монте-Карло можно решить и не преобразовывая ее в задачу для числовой машины, однако я привел здесь это решение по двум причинам. Во-первых, именно так решал во времени эту задачу сам Крейг, а во-вторых, я подумал, что читателю будет интересно увидеть, как две математические задачи могут иметь разное содержание, но одну и ту же абстрактную форму.

Для того чтобы непосредственно убедиться в том, что комбинация RVLVQRVLVQ является родственной по отношению к самой себе (а значит, и открывает замок), будем рассуждать следующим образом. Комбинация QRVLVQ родственна по отношению к комбинации RVLV (согласно свойству Q), поэтому комбинация VQRVLVQ будет родственной по отношению к обращению комбинации RVLV (согласно свойству V), то есть к комбинации VLVR. Значит, комбинация LVQRVLVQ родственна по отношению к комбинации QVLVR (согласно свойству L), и, следовательно, комбинация VLVQRVLVQ оказывается родственной по отношению к обращению комбинации QVLVR, то есть комбинации RVLVQ. Тогда (согласно свойству R) комбинация RVLVQRVLVQ будет родственной по отношению к повторению комбинации RVLVQ, то есть к комбинации RVLVQRVLVQ. Итак, комбинация RVLVQRVLVQ действительно является родственной самой себе.

Часть четвертая. Разрешима или неразрешима наша задача?

14. Логическая машина Фергюссона

Через несколько месяцев после того, как была с блеском разрешена загадка банковского сейфа в Монте-Карло, Крейг и Мак-Каллох наконец-то навестили Фергюссона — их очень заинтересовала его логическая машина. Разговор скоро зашел о сущности доказуемости.

— Я расскажу вам интересную и весьма поучительную историю, — сказал Фергюссон. — На экзамене по геометрии одного студента попросили доказать теорему Пифагора. Он сдал свою работу преподавателю, но тот возвратил ее с пометкой: «Это не доказательство!» Молодой человек пошел к преподавателю и сказал: «Сэр, как вы можете утверждать, будто то, что я вам сдал, — не доказательство? За весь курс лекций вы ни разу не дали нам определения доказательства. Вы давали нам строгие определения таких геометрических понятий, как треугольник, квадрат, окружность, параллельность, перпендикулярность и т. д., однако никогда не привели нам точного определения того, что же вы называете доказательством. Как же теперь вы можете так уверенно заявлять, будто мое доказательство — вовсе не доказательство? Как вы можете доказать, что оно не является доказательством?»

— Блестяще! — воскликнул Крейг, захлопав в ладоши. — Этот юноша далеко пойдет. А что же ответил преподаватель?

— К сожалению, — усмехнулся Фергюссон, — преподаватель оказался сухим педантом без чувства юмора и воображения. Он снизил студенту оценку за непочтительность.

— Очень жаль, — с досадой сказал Крейг. — Окажись я на месте преподавателя, непременно поставил бы этому студенту высший балл.

— Разумеется, — согласился Фергюссон, — я бы поступил точно так же. Но вы же прекрасно знаете, как часто преподаватели, лишенные творческого начала, побаиваются способных студентов.

— Должен признаться, — сказал Мак-Каллох, — что на месте этого преподавателя я бы тоже не смог ответить на вопрос студента. Разумеется, я похвалил мы его за толково поставленный вопрос, но ответить на него я бы все-таки не смог. В самом деле, что такое доказательство? Когда я сталкиваюсь с правильным доказательством, я почему-то всегда понимаю, что оно правильно; когда мне попадаются слабые аргументы, я обычно могу их указать. Но если бы меня попросили дать строгое определение доказательства, я тоже оказался бы в весьма затруднительном положении.

— Точно так же, как и почти все работающие математики, — поддержал Мак-Каллоха Фергюссон. — В девяносто девяти процентах случаев они вполне могут распознать правильность доказательства или указать на слабые места в неправильном доказательстве, однако не и состоянии привести точное определение доказательства. Нас же, логиков, интересует прежде всего анализ самого понятия «доказательство» — ведь мы хотим определить его так же строго, как и любое другое математическое понятие.

— Но раз большинство математиков все же понимают, что такое доказательство, хотя и не могут дать его четкого определения, то так ли уж важно искать его? — заметил Крейг.

— Важно, и по нескольким причинам, — ответил Фергюссон. — Но даже не будь этих причин, я все равно котел бы знать это определение ради самого определения. В истории математики часто случалось, что какие-то основные понятия, например понятие непрерывности, интуитивно понимались и осваивались еще задолго до того, как для них было введено строгое определение. Однако, получив четкое определение, данное понятие как бы переходит в новую категорию. Становится возможным установить связанные с ним факты, которые было бы очень трудно или вовсе невозможно открыть, не зная совершенно четко объема этого понятия. В этом смысле не является исключением и понятие «доказательство». Так, иногда случается, что в доказательстве используется какой-нибудь новый принцип — например аксиома выбора — и при этом часто возникает сомнение, является ли применение этого принципа законным. Так вот, строгое определение понятия «доказательство» позволяет точно указать, какие математические принципы можно использовать, а какие нельзя.


Еще от автора Рэймонд М Смаллиан
Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.