Принцесса или тигр? - [40]

Шрифт
Интервал

следовательно, число Y порождает ассоциат числа АY.

Для частного примера, предложенного Мак-Каллохом (найти число Y, которое порождало бы ассоциат числа 56Y), решением будет число Y = 3325633.


10. Решением является число 3332333. Оно порождает тройной ассоциат числа 333, который является двойным ассоциатом ассоциата числа 333. При этом ассоциат числа 333 есть число 3332333, и, стало быть, число 3332333 порождает двойной ассоциат числа 3332333.

Заметим общую систему: число 323 порождает само себя, число 33233 порождает свой ассоциат, число 332333 порождает двойной ассоциат самого себя. Далее, число 333323333 порождает свой тройной ассоциат, число 33333233333 порождает четверной ассоциат самого себя и т. д. (Во всем этом читатель вполне может убедиться сам.)


11. Решением является X = 3332333. Это число порождает тройной ассоциат числа A333, который является двойным ассоциатом ассоциата числа A333. При этом ассоциатом числа А333 оказывается число А3332АЗЗЗ, которое в свою очередь и есть АХ. Итак, число X порождает двойной ассоциат числа АХ.

В частном случае, когда А = 78, решением будет число 333278333.


12. Очевидно, что ответом будет N = 23. (Ведь мы уже знаем, что число 323 порождает само себя, поэтому, положив N = 23, мы действительно имеем, что число 3N порождает число 3N.)


13. Ответ: N = 22.


14. Ответ: N = 232.


15. Конечно, N = 2.


16. В этом случае вполне подойдет любая цепочка двоек.


17. Да; например, N = 32.


18. Положить N = 33.


19. Положить N = 32323.


20. Как читатель легко может удостовериться сам, любое число, начинающееся с двух или более троек, будет порождать число большей длины, нежели число N2. (Например, если N — число вида 332X, и h — длина числа X, то само число N будет порождать двойной ассоциат числа X, который имеет длину 4h + 3, в то время как само число N2 имеет длину h + 4). Точно так же нам никак не подойдет ни одно число N вида 2X, поскольку если и существует некое число N, которое порождает число N2, то оно обязательно должно быть вида 32X. Далее, число 32X порождает число Х2X, тогда как нам требуется получить число 32X2. Если X2X представляет собой то же самое число, что и 32X2, то, обозначая, как обычно, через h длину числа X, мы должны прийти к условию 2h + 1 = h + 3, откуда следует, что h = 2. Итак, единственным числом, которое могло бы нас устроить (если, конечно, таковые существуют), должно быть число вида 32аb, где а и b — одиночные цифры, подлежащие определению ниже. Далее, число 32ab порождает число аb2ab, тогда как нам нужно получить число 32аb2. Итак, могут ли числа ab2ab и 32аb2 оказаться одним и тем же числом? Попробуем сравнить их цифру за цифрой:

ab2ab

32ab2.

Сравнивая первые цифры, мы получаем, что а = 3; из сравнения же третьих цифр имеем, что а = 2. Полученное противоречие доказывает, что наша задача неразрешима. Итак, не существует такого числа N, которое порождало бы число N2!

10. Принцип Крейга

Спустя две недели Крейг снова навестил Мак-Каллоха.

— Слыхал, что ты построил новый вариант своей машины, — сказал Крейг. — Наши общие друзья рассказывали мне, будто твоя новая машина способна проделывать какие-то удивительные вещи. Это правда?

— Совершенно верно, — ответил Мак-Каллох не без гордости. — Моя новая машина, как и раньше, работает в соответствии с правилами 1 и 2, и, кроме того, в нее введены два новых правила. Однако я только что заварил свежего чая — давай выпьем по чашечке, прежде чем я познакомлю тебя с новыми правилами.

После отличного чая с восхитительными сдобными булочками Мак-Каллох приступил к делу:

— Под обращением некоторого числа я понимаю число, цифры которого записаны в обратном порядке; например, обращение числа 5934 есть число 4395. Вот первое из моих новых правил.

Правило 3. Для любых чисел X и Y справедливо следующее: если число X порождает число Y, то число 4X порождает обращение числа Y.

— Позволь мне проиллюстрировать это правило таким примером, — продолжал Мак-Каллох. — Выбери какое-нибудь произвольное число Y.

— Согласен, — сказал Крейг. — Допустим, я выбрал число 7695.

— Прекрасно. А теперь возьмем число X, которое порождает число 7695, а именно число 27695, потом введем в машину число 427695 и посмотрим, что получится. Мак-Каллох ввел в машину число 427695, а та выдала, разумеется, 5967 — обращение 7695.

— Прежде чем познакомить тебя со следующим правилом, — сказал Мак-Каллох, — я хочу продемонстрировать еще несколько операций, которые моя машина может проделывать с помощью правила 3, конечно, в совокупности с правилами 1 и 2.


1. — Ты, конечно, помнишь, — сказал Мак-Каллох, — что число 323 порождает само себя. Так вот, для моей старой машины, в которую еще не было заложено правило 3, а использовались лишь правила 1 и 2, — число 323 было единственным числом, которое могло порождать самое себя. Для моей теперешней машины ситуация оказывается несколько иной. Можешь ли ты найти какое-нибудь другое число, которое порождало бы самое себя? Кроме того, сколько существует таких чисел?

Решение этой задачи не отняло у Крейга много времени. А вы сумеете ее решить? (Ответ Крейга приведен в разделе «Решения».)


Еще от автора Рэймонд М Смаллиан
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.