Принцесса или тигр? - [37]
— Вообще-то ее нужно чуточку смазать, — заметил Мак-Каллох. — А пока давай рассмотрим еще пару примеров, чтобы выяснить, насколько ты усвоил оба моих правила. Допустим, я ввожу в машину число 3327. Что она нам выдаст? Мы уже знаем, что число 327 порождает число 727, а число 3327 порождает ассоциат числа 727, то есть число 7272727. Какое же число порождается числом 33327? Так вот, если 3327 порождает 7272727 (как мы только что убедились), то 33327 должно порождать ассоциат числа 7272727, то есть 727272727272727. Еще один пример: 259 порождает 59, 3259 порождает 59259, 33259 порождает 59259259259, и, наконец, 333259 порождает 59259259259259259259259.
— Это понятно, — согласился Крейг. — Но пока единственные числа, которыми ты пользовался до сих пор и которые, по всей видимости, действительно что-то «порождают», — это числа, начинающиеся с цифры 2 или 3. А как быть с числами, которые начинаются, скажем, с четверки?
— Видишь ли, моя машина действительно воспринимает только числа, начинающиеся с цифры 2 или 3, но даже среди них не все числа оказываются допустимыми. Когда-нибудь я построю машину побольше, чтобы она могла воспринимать большее количество чисел.
— А какие числа, начинающиеся с цифры 2 или 3, оказываются неприемлемыми для твоей машины? — спросил Крейг.
— Ну, например, не является допустимым число 2, поскольку оно не попадает под действие ни правила 1, ни правила 2; однако любое многоразрядное число, начинающееся с цифры 2, является допустимым. Не будет, например, допустимым число, состоящее из одних только троек. Кроме того, не являются допустимыми числа вида 32, 332 или числа, задаваемые в виде произвольной цепочки троек, за которыми следует цифра 2. В то же время для любого числа X допустимыми будут числа 2X, 32X, 332X и т. д. Короче говоря, допустимыми числами являются только числа вида 2X, 32X, 332X, 3332X, а также любая цепочка троек, за которыми следуют цифры 2X. Далее, поскольку число 2X порождает X, а число 32X порождает ассоциат числа X, то число 332X в свою очередь порождает ассоциат ассоциата числа X — число, которое логично называть двойным ассоциатом числа X, а соответственно число 3332X будет давать нам ассоциат ассоциата числа X — это число будем называть тройным ассоциатом числа X — и т. д.
— Вот теперь я понял все до конца, — удовлетворенно заметил Крейг. — Правда, мне бы хотелось еще узнать, о каких это забавных свойствах твоей машины ты упоминал?
— Тут-то мы как раз и приходим к различного рода комбинаторным головоломкам, — пояснил Мак-Каллох. — О некоторых из них я и хочу тебе рассказать!
1. — Начнем с самого простого примера, — сказал Мак-Каллох. — Пусть имеется число N, которое порождает само себя; значит, когда ты вводишь его в машину, она выдает тебе то же самое число N. Не мог бы ты найти такое число?
2. — Прекрасно, — одобрил Мак-Каллох, когда Крейг показал ему свое решение. — А теперь еще об одной интересной особенности этой машины. Пусть имеется число N, которое порождает ассоциат самого себя; другими словами, если ты вводишь в машину число N, то она выдает тебе число N2N. Не сможешь ли ты отыскать это число?
Эта задача показалась Крейгу несколько труднее предыдущей, но в конце концов он справился и с ней. А вы сумеете ее решить?
3. — Превосходно, — сказал Мак-Каллох, взглянув на решение Крейга. — Единственно, что хотелось бы мне знать, — это каким путем ты шел, чтобы найти исходное число N: так сказать, методом «тыка» или же ты действовал по заранее намеченному плану? И кроме того, является ли найденное тобой N единственно возможным числом, порождающим ассоциат самого себя, или же существуют и другие такие числа?
Тогда Крейг рассказал о своем методе отыскания числа N в последней задаче, а также ответил на вопрос Мак-Каллоха о том, существуют ли другие возможные решения этой задачи. Скорее всего, ход суждений Крейга должен заинтересовать читателя; более того, он существенно облегчает нахождение решений нескольких задач этой главы.
4. — Кстати, по поводу моего последнего вопроса, — сказал Мак-Каллох. — Как ты решил первую задачу? Существуют ли еще какие-нибудь числа, которые порождают сами себя?
Ответ Крейга приведен в решениях.
5. — Далее, — продолжал Мак-Каллох, — имеется число N, которое порождает число 7N (то есть за семеркой следует N). Мог бы ты его найти?
6. — Рассмотрим еще один вопрос, — сказал Мак-Каллох. — Существует ли такое число N, чтобы число 3N порождало ассоциат самого числа N?
7. — А существует ли такое N, — спросил Мак-Каллох, — которое порождает ассоциат числа 3N?
8. — Пожалуй, самая интересная особенность моей машины заключается в том, — сказал Мак-Каллох, — что для любого числа А существует некое число Y, которое порождает число AY. Как доказать это утверждение, и как по заданному числу А найти такое число Y?
Примечание. Этот принцип, и в самом деле очень простой, на практике оказывается еще более важным, нежели предполагал в тот момент Мак-Каллох! В этой книге мы столкнемся с ним еще не раз, и поэтому в дальнейшем будем называть его законом Мак-Каллоха.
9. — Далее, — продолжал Мак-Каллох, — всегда ли для сданного числа
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.
Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.