Приключения Алисы в Стране Головоломок - [54]
С другой стороны, если оба насекомых сказали правду, отсюда должно следовать, что Козел виновен, поскольку Жук и Комар обвинили одного и того же подсудимого (ведь оба сказали правду) и никто из них не обвинил самого себя. Следовательно, зазеркальные насекомые должны были указать на Козла.
Итак, Господин в белой бумаге должен был выяснить из беседы с Белым Рыцарем, что Жук и Комар сказали правду, и это позволило ему узнать решение суда. Таким образом, он выяснил, что Козел был осужден.
87. Самое мудреное дело из всех
Попробуем решить эту интересную задачу с помощью таблицы, которую мы составляли для задачи 83.
Начнем с того, что Бармаглот решил задачу, зная, какой из восьми случаев имел место (то есть зная, о чем говорили подсудимые), а также владея информацией о том, что не более чем одно из трех показаний было правдивым. Эта информация позволяет исключить Случаи 4, 6, 7 и 8. Действительно, в Случае 4 мы находим целых два варианта (4А и 4В), в каждом из которых подсудимые дали самое большее одно правдивое показание; в Случае 6 два таких варианта (6Б и 6В), и в Случае 7 два варианта (7А и 7В), и в Случае 8 тоже два варианта (8Б и 8В). Получается, ни в одном из этих случаев Бармаглот не смог бы вычислить виновного. А вот в Случае 1 лишь в одном варианте 1А имеется всего одно правдивое показание на трех подсудимых, в Случае 2 тоже всего один такой вариант (вариант 2Б), в Случае 3 единственным таким вариантом является ЗА, и в Случае 5 лишь
один такой вариант — 5Б. Итак, мы приходим к выводу, что имел место один из следующих случаев: Случай 1, 2, 3 или 5.
Далее Труляля узнает от Белого Рыцаря, что Бармаглот решил задачу. Поэтому Труляля также было известно, что имел место один из вышеперечисленных случаев (Случай 1, 2, 3 или 5). Если бы он узнал, что А признал свою вину, то исключил бы Случаи 1, 2 и 3, и оставил бы единственно приемлемый Случай 5, что означало бы, что виновный — Б (потому что в Случае 5 всего один вариант 5Б, в котором не более, чем одно показание было правдивым). В этом случае Труляля успешно решил бы задачу, но мы знаем, что ему не удалось этого сделать. Следовательно, Белый Рыцарь не говорил ему, что А признал свою вину, напротив, он должен был сказать, что А заявил о своей невиновности. Таким образом Труляля понял бы, что события на суде не могли развиваться в соответствии со Случаем 5. Но при этом он все равно не смог бы отдать предпочтение какому-то одному из трех оставшихся случаев (1,2 или 3). Следовательно, он не знал, кто был виновен — А или Б. Зато мы теперь знаем, что имел место либо Случай 1, либо Случай 2, либо Случай 3.
Рассмотрим теперь беседу Белого Рыцаря с Траляля. Рыцарь сообщил ему о своем разговоре с Бармаглотом, поэтому Траляля тоже знал, что речь должна идти об одном из четырех случаев (1, 2, 3 или 5). Но Рыцарь утаил от Траляля, что встречался с его братцем Труляля, поэтому Траляля не мог знать, что Случай 5 исключается. Траляля заинтересовали показания то ли подсудимого Б, то ли подсудимого В; благодаря забывчивости Белого Рыцаря мы не знаем, чьи именно. Предположим, его интересовали показания Б. Если бы Белый Рыцарь сообщил ему, что Б признал свою вину, Траляля исключил бы Случаи 1, 2 и 5, и рассматривал бы лишь Случай 3. Тогда он решил бы задачу (придя к выводу о виновности подсудимого А). Но он задачу не решил, поэтому если он спросил про показания Б, то должен был узнать, что Б заявил о своей невиновности. Итак, мы теперь знаем, что если Траляля спрашивал про показания Б, то имел место Случай 1 или Случай 2.
Предположим, Траляля заинтересовали показания подсудимого В. Если бы он узнал от Рыцаря, что В возложил вину на А, он исключил бы Случаи 1, 3, 5 и решил бы задачу (заключив, что виновен Б). Но в действительности он задачу не
решил, поэтому должен был узнать, что В заявил о невиновности А. Это означает, что имел место Случай 1 или Случай 3, а виновным должен быть А (хотя сам Траляля и не мог этого знать, поскольку, не владея полной информацией, не мог исключить и Случай 5, в соответствии с которым виновным был бы Б).
Нам теперь известно, что если Траляля спросил про показания Б, то (поскольку он не решил задачу) на суде имел место Случай 1 или 2. Если же он спросил про В, то имел место Случай 1 или Случай 3. Далее, Шалтай-Болтай спросил у Рыцаря, чьими показаниями интересовался Траляля: подсудимого Б или подсудимого В. Если бы он узнал, что Траляля спрашивал про Б, то понял бы, что имел место Случай 1 или 2, и что виновен либо А, либо Б. Но он не смог бы определить, кто именно из них виновен. Мы знаем, что Шалтай-Болтай сумел решить задачу, поэтому он должен был узнать от Белого Рыцаря, что Труляля интересовался подсудимым В. Тогда Шалтай-Болтай понял бы, что подсудимые давали показания в соответствии со Случаем 1 или Случаем 3, и что в обоих случаях виновен А.
Это доказывает, что виновен подсудимый А.
Глава 11
88. Вопрос
Да, эти утверждения действительно следуют из теории Черного Короля. Начнем с Утверждения 1. Предположим, некто считает, что он бодрствует. Он либо на самом деле бодрствует, либо спит. Предположим, он на самом деле бодрствует. Тогда его суждение верно, но любой, кто рассуждает здраво в бодрствующем состоянии, должен принадлежать к Типу А. Предположим обратное: этот некто спит. Тогда его суждение неверно, но любой, кто рассуждает ошибочно во сне, должен относиться к Типу А. Следовательно, спит он или бодрствует, он должен принадлежать к Типу А. Тем самым мы доказали Утверждение 1.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Перед читателем открывается мир будущих русских императоров. Во что играли царские дети? Что стремились воспитать в них родители? Как формировался характер наследника престола?
Книга рассказывает о том, как люди учились использовать естественные ароматы и создавать искусственные; раскрывает некоторые тайны кулинарных «обманов»; показывает, как криминалисты расследуют преступления с помощью запахов. Она об удивительном и по-прежнему загадочном мире запахов и вкусов.
В этой книге вы прочитаете о великих женщинах Древней Руси, оставивших яркий след в истории страны. Именно женщины в самые тяжелые времена становились подлинными защитниками нравственных и культурных ценностей народа. Велика была их роль и в государственной жизни.