Приборостроение - [3]
Сумма произведений эмпирических значений случайной величены x>i на соответствующие частности называется выборочным средним
– это статистическая характеристика, соответствующая параметрам, т. е. теоретическому анализу, называемая средним значением случайной величины или математическим ожиданием случайной величины.
Математическое ожидание обозначается как
или м.о.(х), и определяется по уже известному теоретическому распределению.
При прерывности случайной величины
где p(x) – функция, которая определяет вероятности p(x) для всех x>i случайной величины. При непрерывности случайной величины
где f(x) – плотность вероятности,
F(x) – функция распределения случайной величины.
Кроме вышеприведенных оперируют следующими мерами положения:
1) среднее гармоническое;
2) среднее логарифмическое;
3) скользящее среднее;
4) накопленное среднее.
Но эти меры используются не очень часто.
2. Меры рассеяния.
Если меры положения характеризовали точки, вокруг которых происходило колебание значений случайных величин, то меры рассеяния характеризуют группировку самих значений колеблющейся величины x или x>i
Подхарактеристика мер рассеяния:
1. Выборочное среднее абсолютное отклонение
– абсолютное отклонение наблюденного значения xi случайной величины от выборочного среднего.
2. Выборочная дисперсия S>2; она характеризует рассеяние или однородность случайной величины x>i
7. Выборочное среднеквадратичное отклонение
Эта характеристика пользуется наибольшей популярностью:
При n>1 = n>2 =... = n>k = 1, т. е. в случае несведения в разряды наблюденных значений x>i,
Дисперсией δ>2 теоретического распределения прерывной случайной переменной является математическое ожидание квадрата отклонения случайной величины х от ее определенного значения x>о ,т. е.
Это математическое ожидание представляет собой: если случайная величина прерывная, то
где p(x>k) – вероятность случайной величины х>k
Роль в теории вероятности среднего квадратичного отклонения наглядно показывает неравенство Чебы-шева, которое имеет вид:
где x – случайная величина;
х>о – ее математическое ожидание;.
f > 0 – некоторый численный коэффициент.
Если взять t = 3, то из (40) следует:
что означает вероятность отклонения случайной величины x от своего среднего значения на величину большую, чем 3δ. Причем полученный результат справедлив при любом теоретическом распределении.
Как разновидностью меры рассеяния в приборостроении, пользуются коэффициентом изменчивости – вариации.
3. Еще одной важной разновидностью меры рассеяния в приборостроении для статистического анализа и контроля является размах выборки W, его также называют широтой эмпирического распределения.
W = x>imax = x>imin
Как видно из формулы, размах выборки характеризует однородность наблюденных значений случайной величины хг В зависимости от знака W, можно заключить об отношении случайной величины к мере положения (конкретно, выборочной медиане), что и видно из следующей системы:
8. Теоремы о средних значениях и дисперсиях
Теоремы о средних значениях и дисперсиях дают представление о том, как себя поведут средние значения и дисперсии при объединении нескольких выборок, у каждой из которых есть свое средневзвешенное значение случайной величины.
Пусть объемы N>1, N>2, ... ,N>k, которые имеют соответствующие средневзвешенные х>1, x>2, …, x>k, объединены в одно.
Теорема 1. Математическое ожидание (среднее значение) суммы случайных величин равно сумме их математических ожиданий (средних значений).
То есть математическое ожидание суммы
точно так же себя ведет дисперсия.
Теорема 2. Дисперсия объединенной выборки S2 равна средневзвешенной из дисперсий отдельной выборки, сложенной с дисперсией средних xi частных выборок, т. е. если дисперсии S>1>2,S>2>2, …,S>k>2 ־ принадлежат выборкам N>1, N>2, ... ,N>k, то в случае объединения этих выборок общая дисперсия
Очевидно, что объемы N1, N2, Nkобъединены в одну выборку с соответствующими дисперсиями
S>1>2,S>2>2, …,S>k>2
Вторым слагаемым является дисперсия средних x>i частных выборок около среднего объединенной выборки х. Поэтому очевидно, что
то второе слагаемое тоже равнялось бы нулю. В таком случае
где S>2 – средневзвешенная из дисперсий исходных выборок.
Таким образом, дисперсия суммы (или разности) независимых случайных величин равна сумме дисперсий этих величин.
В общем случае,
9. Закон распределения Пуассона и Гаусса
Закон Пуассона. Другое название его – закон ра-определения редких событий. Закон Пуассона (З. П.) применяется в тех случаях, когда маловероятно, и поэтому применение Б/З/Р нецелесообразно.
Достоинствами закона являются: удобство при вычислении, возможность вычислить вероятность в заданном промежутке времени, возможность замены времени другой непрерывной величиной, например, линейными размерами.
Закон Пуассона имеет следующий вид:
и читается следующим образом: вероятность появления события А в m раз при n независимых испытаниях выражается формулой вида (59), где а = пр – среднее значение p(A), причем а является единственным параметром в законе Пуассона.
Закон нормального распределения (закон Гаусса). Практика неуклонно подтверждает, что закону Гаусса с достаточным приближением подчиняются законы распределения ошибок при измерениях самых различных параметров: от линейных и угловых размеров до характеристик основных механических свойств стали.
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.
В книге кратко изложены ответы на основные вопросы темы «Финансовый менеджмент». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета.Пособие адресовано студентам высших и средних образовательных учреждений, а также всем, интересующимся данной тематикой.
Информативные ответы на все вопросы курса «Неорганическая химия» в соответствии с Государственным образовательным стандартом.
В книге кратко изложены ответы на основные вопросы темы «Уголовно-процессуальное право». Издание поможет систематизировать знания, полученные на лекциях и семинарах, подготовиться к сдаче экзамена или зачета. Пособие адресовано студентам высших и средних образовательных учреждений, а также всем, интересующимся данной тематикой.
Пособие содержит ответы на экзаменационные вопросы по учебной дисциплине «Налоговое право».Доступность изложения, актуальность информации, максимальная информативность, учитывая небольшой формат пособия, – все это делает шпаргалку незаменимым подспорьем при подготовке к сдаче зачета или экзамена.