Правда и ложь в истории великих открытий - [16]
Наконец, как подчеркивает Джеральд Холтон, история Милликена говорит о том, что способность игнорировать обоснованную критику может сыграть положительную роль в разработке более совершенных теорий: несокрушимая вера Милликена в атомную теорию не позволяла ему замечать критику тогда, когда менее убежденный ученый признал бы свое поражение. Вместо этого вооруженный атомной теорией Милликен и его соратники в 1909 году лишь продолжили поиски доказательств существования электрона.
Глава 3
Затмение Исаака Ньютона
В 1919 году [Эддингтон] возглавил экспедицию на остров Принсипи (Западная Африка). Именно во время этой экспедиции и было получено первое подтверждение теории Эйнштейна, согласно которой гравитация изгибает луч света, когда он проходит вблизи массивной звезды. Во время полного затмения Солнца было обнаружено, что положение звезд, видимых из-за солнечного диска во время его затмения, было, как и предсказывала общая теория, несколько смещено.
Энциклопедия «Британника» (1992)
Экспедиции в Бразилию и на остров Принсипи по случаю солнечного затмения, произошедшего 29 мая 1919 года, обнаружили, что эффект, предсказанный Эйнштейном, на самом деле существует, причем в количественном отношении соответствие получилось достаточно хорошим.
В. Паули. Теория относительности (1958)
Представьте себе, что однажды вы, пользуясь сверхмощным телескопом, точно определили расстояния между звездами в созвездии, а потом решили повторить эксперимент — на следующую ночь. И случится так, что свет, направляясь к вам, пройдет очень близко от какой-нибудь звезды или черной дыры, что, к своему удивлению, вы обнаружите, что звезда поменяла положение по отношению к соседкам — звездам в созвездии. Однако, повторив эксперимент в третий раз, во время которого, как и в первом случае, свет не будет проходить рядом с какими-нибудь звездами или черными дырами, вы увидите «странствующую» звезду снова на ее законном месте. Причиной такой странной миграции неподвижных звезд является то, что гравитационные поля обладают способностью деформировать пространство-время и тем самым менять направление движения светового луча. Степень искажения зависит от массы, генерирующей гравитационное поле, и тем, насколько близко от нее проходит световой луч. Ни наш мозг, ни наши камеры не умеют учитывать такие гравитационные эффекты. Более того, когда свет звезды доходит до нас, предварительно пройдя рядом с массивным небесным телом, мы инстинктивно располагаем источник света так, словно луч шел к нам по прямой линии. Из-за этого мы неверно определяем местоположение звезды.
Каким бы странным ни казалось нам искривление светового луча в гравитационном поле, науке это явление было известно давно. Идея о том, что луч света — это поток частиц, имела своих сторонников в течение тысячелетий. После признания ньютоновской теории гравитации оказалось, что она приложима и к этим гипотетическим единицам света. Логично было считать, что каждая такая единица обладает определенной массой, хотя и невообразимо малой, а раз так, то на свет, как и на остальные объекты во Вселенной, будет действовать гравитация. В 1901 году баварский ученый Иоганн фон Зольднер рассчитал с ньютоновских позиций, какое отклонение луча можно ожидать. Представим себе, что свет стремится к нам через воображаемую трубу. При наблюдении с Земли эта труба будет иметь три координаты, с помощью которых можно определить местоположение любой частицы света: две пространственные координаты (вправо/влево, вверх/вниз) и время. Таким образом, по мере движения частицы света по этой воображаемой трубе можно учесть воздействие на нее ближайших звезд и планет и с большой точностью рассчитать ее пространственно-временные координаты.
По крайней мере, так казалось до второго десятилетия XX века. А потом Альберт Эйнштейн опубликовал свои работы по теории относительности и фундаментальным образом подверг сомнению простоту этой картинки. По Эйнштейну, гравитация влияет не на частицы света, а на сами пространственно-временные координаты, которые до того принимались как некий абсолют, позволяющий рассчитывать путь световых частиц. Нашу воображаемую трубу больше нельзя было рассматривать как имеющую стандартные единицы пространства и времени по всей ее длине. Продолжать думать иначе — все равно что считать, будто топографическая сетка на карте не является привнесенной, а составляет часть пейзажа. Как и пейзаж, она подвергается воздействию великих сил природы. Это происходит потому, утверждал Эйнштейн, что огромные гравитационные поля искривляют пространственно-временной континуум и меняют путь проходящего через них света.
Даже зная, что сегодня вряд ли найдется хоть один физик, который не верит в общую теорию относительности, понять эти идеи довольно трудно, а в первое десятилетие XX века у общей теории относительности был статус изящного рассуждения, основанного на ряде сомнительных наблюдений. Сторонники Эйнштейна сталкивались с невероятными трудностями. Несмотря на то что его теория была во многом спекулятивна, история человеческой мысли редко знавала такие изящные и не поддающиеся здравому смыслу концепции. Вскоре физики по обе стороны баррикад, казалось, использовали все, чтобы разработать методы проверки общей теории относительности. В 1916 году Эйнштейн сам рассчитал, что степень искривления света в соответствии с общей теорией относительности будет в три раза больше, чем предсказывала ньютоновская механика. И вот наконец в 1919 году появилась потрясающая возможность экспериментально подтвердить теорию Эйнштейна.
«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Книга посвящена истории астрологии, заблуждениям и идеям, ее питавшим.Кого только не встретишь на страницах этой книги! Тут и Птолемей, и Коперник, и Тихо Браге, и Иоганн Кеплер.Сегодняшняя наука вынесла свой вердикт. Астрология признана лженаукой, но почему человечество никак не может забыть о ней, почему астрологические прогнозы по-прежнему привлекают внимание самых разных людей? Видно, желание заглянуть в будущее неистребимо, и так хочется верить, что звезды, таинственно мерцающие в небесах, все о нас знают…
Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.
Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…
В истории медицины были открытия, без которых она никогда не стала бы современной наукой, способной порой творить настоящие чудеса и вылечивать даже самые тяжелые болезни. Именно о таких открытиях и рассказывают известные американские врачи кардиолог Мейер Фридман и радиолог Джеральд Фридланд. Повествуя о выдающихся ученых, об их жизни и об их времени, об их предшественниках и последователях. авторы создают яркие образы великого анатома Везалия, открывателя мира бактерий Левенгука, борцов с инфекционными болезнями Пастера и Коха.