Посвящение в радиоэлектронику - [9]
. Примерная структурная схема устройства автопилота, обеспечивающего регулирование только одного параметра, например курса самолета, показана на рисунке.
Автопилот.
При появлении сигнала (летчик повернул штурвал на некоторый угол) система управления заставляет отклоняться рули самолета, и его курс изменяется. Датчик положения вырабатывает сигнал, соответствующий новому курсу, а сравнивающее устройство контролирует, достиг ли этот сигнал требуемого значения, и, если нужно, вносятся коррективы. Как только самолет лег на нужный курс, сигнал обратной связи, вырабатываемый сравнивающим устройством, прекращает действие сигнала управления и система управления устанавливает рули в нейтральное положение. Особое значение имеет обратная связь для автоматического поддержания заданного курса. Допустим, что никакого сигнала управления от летчика не поступало, но курс самолета несколько изменился (подул боковой ветер или на пути попалась «воздушная яма»). Датчик положения немедленно отреагирует на изменившееся направление полета, и сравнивающее устройство выработает сигнал ошибки. По цепи обратной связи он поступит в систему управления, а она повернет рули самолета и скорректирует курс.
Другой пример автоматическое устройство для поддержания заданной температуры — термостат. Он используется и в аппаратуре для тонких биохимических исследований, и в высокостабильных кварцевых генераторах, и в инкубаторах для выведения цыплят.
Температура внутри устройства контролируется датчиком, например терморезистором. Его сигнал сравнивается с опорным, задающим нужное значение температуры. Если температура понижается, сопротивление терморезистора возрастает и сравнивающее устройство вырабатывает сигнал обратной связи, управляющий регулятором тока, который, в свою очередь, включает нагреватель.
Но как только температура объекта достигает заданной, нагреватель отключается. Как видим, здесь тоже имеет место управление с обратной связью: регулируемый параметр управляет работой системы управления.
Устройство термостата.
Простейший термостат.
Какова же роль электроники в описанных процессах? Самая непосредственная. Здесь мы имеем дело с сигналами управления, датчиков, обратной связи. Они могут передаваться в различной форме, но главное-чтобы их можно было легко и быстро обработать. Для этого на данном этапе развития науки и техники лучше всего подходят электрические сигналы. Следовательно, все устройства и блоки, показанные на структурных схемах, должны быть электронными. Конечно, в ряде случаев пригодны и очень простые устройства, не содержащие электронных схем. Например, простейший регулятор температуры содержит лишь биметаллическую пластинку с контактами и спираль нагревателя. Благодаря разным коэффициентам линейного расширения металлов, из которых изготовлена пластинка, при изменениях температуры она изгибается, замыкая контакты при остывании и размыкая при нагреве. Точность регулирования в таком устройстве невысока и составляет единицы градусов. Как правило, электронный регулятор температуры содержит интегральную микросхему-операционный усилитель, усиливающий слабый сигнал датчика и сравнивающий его с опорным, а также мощные транзисторы и тиристоры, управляющие током нагревателя. В результате получают точность поддержания температуры до сотых долей градуса, а при необходимости и еще выше.
Итак, управление осуществляется посредством сигналов.
Я рад, что редактор после долгих споров пропустил этот подзаголовок, не выдерживающий никакой критики с литературной точки зрения. Следовало бы сказать проще: «Поговорим о сигналах». Но само слово «сигнал» имеет общий корень с английским sign, что можно перевести как знак, обозначение. Написанное слово означает некоторое понятие и, таким образом, тоже является сигналом. Ну а передача сигналов, хотя бы и на бумаге, — это сигнализация. Поэтому посигнализируем немного словами-сигналами на тему о сигналах.
Сигналы, передаваемые в электрической форме, обладают множеством достоинств. Во-первых, не требуется движущихся механических устройств, медленных и подверженных поломкам. Во-вторых, скорость передачи электрических сигналов приближаемся к максимально возможной скорости света. Наконец, в-третьих, электрические сигналы легко обрабатывать, сравнивать и преобразовывать с помощью электронных устройств, отличающихся чрезвычайно высоким быстродействием. Вот почему электрический телеграф, изобретенный в первой половине прошлого века, прочно удерживает свои позиции и не уступает их до настоящего времени в почтовых ведомствах всех стран. Телефон, созданный во второй половине прошлого века, основан на преобразовании механических колебаний частиц воздуха в электрические сигналы. Радио это тоже передача сигналов, но уже не с помощью электрического тока, текущего по проводам, а с помощью электромагнитных волн, не требующих для распространения какой-либо среды. Радиоволны лучше всего распространяются в космосе, несколько хуже — в атмосфере Земли и совсем плохо — в толщах суши и океанов (там они просто поглощаются, проникая лишь на ограниченную глубину порядка длины волны). Радиоволны — истинные приверженцы свободы и простора; вдали от поглощающих материальных тел, в безбрежных просторах открытого космоса они живут вечно. Я не утрирую. Совсем недавно открыто реликтовое (древнее) излучение, существующее столько же лет, сколько лет и нашей вселенной. Об этом я еще расскажу позже, а сейчас вернемся к сигналам, не внеземных цивилизаций, конечно (они пока не обнаружены, хотя исследования в этом направлении проводятся), а к нашим обычным, земным.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.