Посвящение в радиоэлектронику - [5]

Шрифт
Интервал

Сведения об ушедшем поезде дежурный по станции передает своему коллеге на соседней станции, а движение поезда по перегону контролируют поездные диспетчеры, и так на всем многотысячекилометровом пути следования поезда.

Пока на действующих железных дорогах применяется электромеханическая релейная автоматика. Но уже полным ходом идут работы по замене громоздких и ненадежных реле маленькими и удивительно четко срабатывающими интегральными микросхемами. Думаю, что недалек тот день, когда вся железнодорожная автоматика превратится в электронную. Итак, если необходимо куда-нибудь ехать, мы идем за железнодорожным билетом на нужный скорый поезд.

Подходим к окошку кассы. Теперь в любой железнодорожной кассе Москвы можно купить билет на любой поезд. Поездов сотни, билетов сотни тысяч, но на каждое место в каждом поезде продают только по одному билету! Так кто же помнит, какие билеты проданы, а какие нет? Человеческого мозга для этого явно недостаточно. Все помнит электронный мозг ЭВМ. специально предназначенной для централизованной продажи билетов (системы «Стрела» и «Экспресс»). Вспомните, как поступил кассир, когда вы изложили ему свое скромное желание. Он куда-то (теперь мы знаем, что в ЭВМ) отправил эти сведения и стал ждать. В это время ЭВМ проанализировала запрос, установила наличие свободных мост и выдала ответ на терминал — аппарат, стоящий перед кассиром. Ответ вас устроил, вы сообщили об этом кассиру, он нажал кнопку, и печатающее устройство терминала затрещало, выдавая билет. Сведения о проданном билете отправились обратно в ЭВМ. Электронно-вычислительная машина одна, а кассовых терминалов у нее много, вот поэтому-то и можно купить билет ка любой поезд в любой кассе. Роль кассира свелась к тому, чтобы быть посредником между пассажиром и ЭВМ. Вот вам и нет электроники на железнодорожном транспорте!

Поехали. К сожалению, нельзя сходить на экскурсию в кабину машиниста, откуда открывается замечательный вид! Навстречу поезду бегут поля, перелески, деревеньки, полустанки, колоса грохочут по мостам и в туннелях. Электроники и в кабине машиниста предостаточно. На скоростных электропоездах ЭР200 силовые цепи тяговых электромоторов переключаются тиристорами. Тиристор — это полупроводниковый выключатель, способный либо пропускать, либо не пропускать ток, причем очень большой силы. Тиристоры появились сравнительно недавно благодаря успехам полупроводниковой электроники. Для управления тиристорами используются интегральные микросхемы. Электропоезд, оснащенный самой современной электронной техникой, пробегает путь от Москвы до Ленинграда за 4 часа 59 минут. Грузовые поезда водит электровоз ВЛ10у. Он имеет систему автоматического управления рекуперативным торможением. При рекуперативном торможении в контактную сеть возвращается часть электроэнергии, израсходованной на разгон поезда. В этом случае тяговые электродвигатели работают в режиме генераторов, вырабатывая электроэнергию и создавая необходимый тормозящий момент. Нет ли у вас знакомого, хвастающегося своими знаниями в области электротехники? Покажите ему полную принципиальную электрическую схему современного электровоза. Если он не окончил Институт инженеров железнодорожного транспорта, вряд ли он в ней разберется уж очень она сложна. Честно признаюсь, что я с первого взгляда в ней ничего не понял.

Ну хорошо, и на железных дорогах много электроники. А автомобильный транспорт? На полуторке 30-х годов действительно электроники было немного. Аккумулятор, генератор, фары, прерыватель-распределитель (трамблер) — все это относится к обычной электротехнике. Но заметьте, уже есть реле-регулятор, а это — элемент электронной автоматики. Обратимся к современным автомобилям. Электронная система зажигания, содержащая десяток транзисторов и полупроводниковых диодов, электронный регулятор напряжения, электронные указатели поворотов, электронные системы сигнализации. Электронная автоматика все шире используется на автомобиле. А недавно японцы и весь приборный щиток заменили одним жидкокристаллическим индикатором — дисплеем, подобным тому, что в электронных часах, только гораздо сложнее.

Зажиганием и другими системами автомобиля управляет микропроцессор. Он автоматически устанавливает угол опережения зажигания, подачу бензина и другие параметры в соответствии с дорожными условиями и нагрузкой автомобиля. Он одновременно считает и показывает на дисплее число оборотов двигателя, путь, пройденный автомобилем с момента выпуска и с сегодняшнего утра, скорость, расход бензина. Он сосчитает, сколько вам осталось проехать до следующей заправки, и многое другое. И вообще, если вы неэкономично поведете такую машину, дисплей на это укажет. Специалисты установили, что стоимость микропроцессора и сопутствующей электроники очень быстро окупается хотя бы за счет сэкономленного бензина. А уменьшение токсичности выхлопных газов — это уже прямая выгода, не менее важная.

Пусть вы никогда не были и не будете шофером, а к железнодорожному транспорту, кораблям и самолетам, буквально заполненным разнообразнейшей радиоэлектронной техникой, имеете отношение только как пассажир. Допустим, вы занимаетесь обработкой металлов. Вы слесарь, токарь или только собираетесь приобрести подобную специальность. Пока имеется еще немало чисто механических металлообрабатывающих станков, но пройдет немного времени, и первое, с чем вы столкнетесь на производстве, будет станок с числовым программным управлением. Что это такое? Станок как станок, только движение суппорта, подача резца и тому подобные операции на нем полностью автоматизированы. На станке или рядом с ним закреплен небольшой блок с микропроцессором. Контур изготавливаемой детали записан в память блока. Для получения максимальной точности сделано это в цифровой форме.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.