Посвящение в радиоэлектронику - [15]
Со стопроцентной уверенностью вы скажете, что «ь», и будете совершенно правы. Так сколько бит информации нес этот последний символ «ь»? А нисколько. Но на его передачу было затрачено пять двоичных разрядов. Таким образом, мы оценили максимально возможную скорость передачи информации. Она реализуется лишь для хаотических, случайных сигналов и беспорядочного набора символов, т. е. для нестандартных текстов.
В реальном тексте можно допустить довольно много пропусков и ошибок, почти не уменьшив количество переданной информации.
Возьмите текст стандартной телеграммы: «Поздр-м-с-ем ро-д-ния ж-ла с-a-тья зд-р-в-я ус-хо-». Из пятидесяти букв пропущено восемнадцать, более трети, и что же? Текст прекрасно восстанавливается. Несколько труднее было бы восстановить текст: «Грузите апельсины бочками», но и это нетрудно, если знать классиков юмористической литературы. А вот текст нестандартной поздравительной телеграммы: «Завидуем только сорок желаем новой весны». Здесь уже труднее выбросить часть букв, и не зря в таких случаях работники телеграфа делают к телеграммах приписку: «Текст верен».
Таким образом, действительное количество информации в сообщении является случайной величиной. Как и для любой случайной величины, можно найти среднее количество информации на символ (букву).
Первую попытку уменьшить количество передаваемой информации, повысив эффективность кодирования, предпринял еще С. Морзе, изобретатель телеграфной азбуки. Вместе с помощниками он изучил немало английской классической литературы, не вникая в смысл прочитанного, а подсчитывая количество различных букв в тексте. В результате была найдена относительная вероятность появления той или иной буквы. Чаще других встречалась буква «с», и ей была присвоена самая короткая кодовая комбинация — одна точка (·). Следующей по частоте появления оказалась «t», и эту букву обозначили одним тире (―). Ну а реже всех появлялись «j» (·―――), «у» (―·――) и «q» (――·―), разумеется, они были обозначены самыми длинными кодовыми комбинатами. Код Морзе неравномерный, он неудобен для автоматического буквопечатающего телеграфа-телетайпа. В автоматических аппаратах используют равномерный код Бодо, в котором каждому символу — букве отводится пять двоичных знаков — посылок тока. Для автоматического телеграфа особую важность приобретают вопросы оптимального кодирования, которыми, в частности, и занимается наука, о которой я немного расскажу в следующем параграфе.
Телеграфисты, использовавшие код Морзе, не успокоились на достигнутом. При обычном телеграфном обмене передается очень много стандартных слов и фраз. Их стихийно стали сокращать, и в результате появился особый язык общепринятых сокращений. Он особенно был в ходу в 20-е и 30-е годы в связи с развитием телеграфной радиосвязи и используется до сих пор как профессиональными радистами, так и радиолюбителями-коротковолновиками. У них он так и называется «радиолюбительский код». Вот типичный пример текста при радиосвязи: «Gd dr оm Vy gld meet u. Wx hr is stormy…. Cuagn, ga». Текст получился после общепринятых сокращений слов во фразах «Good day dear old man. Very glad to meet you. Weather here is stormy… Call you again, go ahead». («Добрый день, дорогой приятель. Очень рад связи с тобой. Погода здесь ветреная… Вызову тебя снова, передавай, буду на приеме».) Подобных фраз можно услышать сегодня сколько угодно, выучив телеграфную азбуку и настроив приемник на частоту любительского коротковолнового диапазона. А служебные, ведомственные и государственные радиостанции используют более строгие и официальные Q-код, Z-код и др. Сочетания Q-кода часто используют и радиолюбители. Например, QRP означает «Уменьшите мощность», QSL — «Прием подтверждаю», QRU — «Для вас сообщений нет». А кодовое сочетание QST, стоящее в названии известного американского радиолюбительского журнала, означает «Всем постоянным корреспондентам». Ошибочный прием одной лишь буквы полностью изменяет смысл сообщения. Зато коды позволяют намного сократить время передачи сообщений и разгрузить линии связи.
Наш мир полон информации. Год от года ее становится все больше. Информация есть совокупность сведений о событиях, явлениях, предметах — одним словом, обо всем, что имеется и происходит в мире. Для передачи и хранения информации используют знаки (символы). С их помощью информацию представляют в виде письменного текста, шифрованной цифровой таблицы, в форме живой человеческой речи, графиков, рисунков, электрических сигналов и многими другими способами.
Совокупность знаков, содержащих ту или иную информацию, называют сообщением. Это текст телеграммы, ток микрофона, телевизионное изображение. Сообщения необходимо передавать от человека к человеку, из одного места в другое, ибо без обмена информацией попросту невозможна разумная человеческая жизнь.
Информация, заключенная в этой книге, никогда не дошла бы до вас, сети бы книга не была издана, а вы ее не прочитали. Собираясь начать какое-либо дело, например конструирование детекторного приемника, вы прежде всего должны ознакомиться с уже имеющейся информацией по этому вопросу. Иначе вам придется самостоятельно повторить научные и экспериментальные труды Ампера, Фарадея, Максвелла, Герца, Попова и многих других ученых и исследователей. Согласитесь, это не самый оптимальный и легкий путь!
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.