Пособие кислотчику сульфитно-целлюлозного производства - [3]

Шрифт
Интервал

Полученное известковое молоко содержит значительное количество примесей (песка и недожога), которые должны быть удалены во избежание забивания коммуникаций и аппаратуры для приготовления кислоты. Для очистки известкового молока часто применяют мешалки Русселя. Они представляют собой горизонтальную цилиндрическую ванну, разделенную на ряд отделении поперечными стенками. В этих отделениях оседают примеси, выпадающие из протекающего по мешалке известкового молока. Осевшая грязь продвигается в направлении, противоположном движению известкового молока, при помощи гребков, насаженных на вращающийся вал.

Более совершенным аппаратом для гашения извести является, гаситель-классификатор — бак с мешалкой, совмещенной со шнековым наклонным классификатором, для удаления крупных примесей.

Эффективной является очистка известкового молока в вихревых очистителях, где отделение тяжелых примесей происходит за счет центробежной силы. Вихревой очиститель (фортрап) представляет собой циклон, в который по касательной под давлением питательного насоса вводится известковое молоко. Тяжелые частички под действием центробежной силы отбрасываются к стенкам циклона и отводятся в нижней его части. Очищенное известковое молоко поднимается вверх и отводится через центр верхней части аппарата.

Склады окиси магния. Окись магния хранят подобно извести в специальных бункерах, куда она подается из вагонов элеваторами. Для гашения окиси магния применяют баки емкостью 10 и 45 м>3, с вертикальными скоростными мешалками (рис. 3). Гашение окиси магния происходит при температуре 90–95 °C в течение 5–6 ч. Поддержание нужной температуры осуществляется подачей острого пара. Гидроокись магния концентрацией 200 г/л из гасителей направляется в баки-мешалки для хранения. При подаче гидроокиси магния в расходную мешалку она разбавляется до концентрации 50 г/л.


Рис. 3. Бак для гидратации:

1 — штуцер для подачи магнезита, 2 — перелив, 3 — диффузор, 4 — мешалка, 5 — выход, 6 — грязевик, 7 — лаз, 8 — штуцер для разбавления, привод мешалки.


Склад соды. Существуют два способа хранения кальцинированной соды — сухой и мокрый. При сухом способе складом служат обычные бункера (как для извести и окиси магния). Более прогрессивным способом является мокрое хранение соды (рис. 4).


Рис. 4. Схема мокрого хранения соды:

1 — мешалка для разводки соды; 2 — бак для мокрого хранения и растворения соды; 3 — смесители; 4 — бак для хранения раствора соды.


Сода из железнодорожных вагонов выгружается в мешалку, где происходит приготовление раствора концентрацией около 700 г/л. Собственно складом служит специальный бак; в нижней части его находится барботер для подачи перемешивающего воздуха и пара, при помощи которого поддерживается определенная температура. Температура 35° является оптимальной, так как при ней не происходит кристаллизации соды. Перед подачей в производство раствор разбавляется до концентрации 100–200 г/л.

Склад аммиачной воды. Аммиачная вода поступает на заводы в виде 25 %-ного раствора и при такой концентрации хранится в металлических (в черном исполнении) баках различной емкости.

Склад жидком двуокиси серы. Жидкая двуокись серы поступает на склад в железнодорожных цистернах и передавливается в танки сжатым воздухом (давление 8–12 кг/см>2). Обычно устанавливаются три танка: приемный, расходный и резервный. Из танков SO>2 сухим сжатым воздухом передавливается в испаритель (змеевиковый подогреватель), где испаряется за счет тепла горячей воды. Подогрев воды до 50° ведется острым паром (с температурой 142,9° и давлением 3 ат), подаваемым в испаритель. Газообразная SO>2 после испарителя направляется в производство.

ТЕОРИЯ ПОЛУЧЕНИЯ СУЛЬФИТНОЙ КИСЛОТЫ

Сжигание серусодержащего сырья

Сжигание серы и состав газовой смеси

При горении серы происходит следующая основная реакция

S + O>2 = SO>2 + 70 900 кал.

Так как молекулярный вес серы и кислорода одинаков (32), то на 1 кг серы расходуется 1 кг кислорода и образуется 2 кг SO>2.

При сгорании 32 г серы выделяется 70 900 кал, следовательно, при сгорании 1 кг серы выделится тепла

(70 900 1000) / 32 = 2 210 000 кал.

Содержание кислорода в воздухе по объему составляет 21 %, остальные 79 % занимает азот; в случае полного расходования кислорода воздуха на горение максимальное содержание SO>2 в газовом смеси составит 21 %. Однако сжигание серы практически происходит с некоторым избытком воздуха, поэтому концентрация SO>2 меньше теоретически возможной и составляет 12–15 % (в печах новейшей конструкции до 18 %). Содержание SO>2 можно приблизить к теоретически возможному, сжигая серу в чистом кислороде.

Коэффициент избытка воздуха α по по отношению к теоретически необходимому можно вычислить по формуле

α = 21 / %SO>2 в газовой смеси.

Для вращающихся печей он составляет 1,25–1,5; для стационарных 1,1–1,2.

Объем воздуха, необходимый для горения 1 т серы, можно подсчитать по формуле

V = 70 °C>s / C>SO>2

где: V — объем воздуха при нормальных условиях (при 0 °C и 760 мм рт. ст.), м>3;

C>s — содержание выгорающей серы в сырье, %;

C>SO>2 — содержание SO>2 в обжиговом газе, объемных %;

Объем газовой смеси, образующейся при сжигании 1 кг серы, можно подсчитать следующим образом.


Рекомендуем почитать
Лаборатория химических историй. От электрона до молекулярных машин

Что происходит с молекулами в момент химических реакций и почему одни вещества становятся мягкими, а другие твердеют, одни приобретают упругость, а другие – хрупкость? Каким образом вязкая жидкая масса превращается в легкую приятную ткань и почему человек не может жить без полимеров? Какими были люди, совершившие величайшие открытия в химии, и какую роль сыграл элемент случайности в этих открытиях? Как выглядит лаборатория и так ли на самом деле скучна жизнь обычного лаборанта? Отвечая на эти и другие вопросы, Михаил Левицкий показывает, что химия – это весьма увлекательно!


Химия навсегда. О гороховом супе, опасности утреннего кофе и пробе мистера Марша

Почему дирижабль «Гинденбург» был наполнен водородом, а не гелием и почему это привело к трагедии? Чем занимались зелейщики и почему крестьяне их не жаловали? Зачем ацетон был нужен военно-морскому флоту Великобритании? Действительно ли оловянные пуговицы сыграли фатальную роль в наполеоновской кампании 1812 года? Ларс Орстрём, шведский химик, специализирующийся в области неорганической химии, преподаватель и ведущий научно-популярного подкаста журнала Chemistry World, с непринужденностью и азартом настоящего ученого распутывает детективные сюжеты из литературы и из жизни, рассказывая захватывающие истории о химических элементах и нашем взаимодействии с ними.


Механизмы неорганических реакций выплавки чугуна и стали

В монографии рассмотрены проблемы механизмов неорганических реакций железа в процессах выплавки чугуна и стали, проблемы получения монокристаллической структуры решетки.


Химия, изменившая мир

Эта книга о пестицидах, но не торопитесь отложить ее в сторону: она была написана не только для специалистов, но и для всех, кто интересуется устройством нашего мира. Для всех, кто хочет узнать: что опаснее — эпидемия, вызванная насекомыми, или яды, распыляемые на полях; какой пестицид самый популярный в мире; и как роботы помогут нам в будущих войнах за урожай. Но главное — эта книга о людях, чьи открытия изменили мир и позволили не погибнуть от голода все увеличивающемуся населению Земли.


Загадка «Таблицы Менделеева»

Согласно популярной легенде, Д. И. Менделеев открыл свой знаменитый Периодический закон во сне. Историки науки давно опровергли этот апокриф, однако они никогда не сомневались относительно даты обнародования закона — 1 марта 1869 года. В этот день, как писал сам Менделеев, он направил первопечатную Таблицу «многим химикам». Но не ошибался ли ученый? Не выдавал ли желаемое за действительное? Известный историк Петр Дружинин впервые подверг критике общепринятые данные о публикации открытия. Опираясь на неизвестные архивные документы и неучтенные источники, автор смог не только заново выстроить хронологию появления в печати оригинального варианта Таблицы Менделеева, но и точно установить дату первой публикации Периодического закона — одного из фундаментальных законов естествознания.


Яды и противоядия

В книге на примерах распространенных отравлений рассматриваются сущность и особенности взаимодействия реактивных структур организма, ядов и противоядий. Освещаются пути и характер научного поиска токсикологов, химиков, биохимиков, фармакологов в раскрытии молекулярных механизмов токсических процессов. В связи с расширяющимся внедрением химических веществ в различные сферы человеческой деятельности особое место в книге занимает описание достижений науки и практики в создании эффективных антидотов, характеризуются возможности и перспективы их применения.