Популярная аэрономия - [35]
В предыдущих главах мы уже видели, как важно знать ионный состав ионосферы на разных уровнях и как много дали масс-спектрометрические измерения этого состава в Е- и F-области. Ну а что же в D-области? Та же картина. Различные типы масс-спектрометров, успешно применяемые выше 100 км, ниже работать не могут. Они "захлебываются" в плотной нейтральной среде и либо совсем выходят из строя, либо отказываются измерять нужные параметры.
Чтобы спасти положение, придумали, как "обмануть" масс-спектрометры и заставить их работать на малых высотах. Перед анализатором прибора стали помещать камеру с вакуумным насосом. Насос непрерывно откачивает воздух, поступающий из атмосферы, окружающей ракету, и создает в камере пониженное давление, которое масс-спектрометр способен "пережить". Прибор работает и дает сведения об относительном содержании различных ионов в окружающем газе, но, естественно, не об их абсолютном количестве.
Ясно, что описанная процедура делает масс-спектрометрические эксперименты на малых высотах значительно более сложными и громоздкими, чем на высотах Е- и F-области. Именно поэтому активное исследование ионного состава D-области задержалось по сравнению с более высокими областями почти на 10 лет.
Масс-спектрометрический экспериментНо это еще не все. Специфика самого ионного состава области D вносит дополнительные трудности в процесс его измерений. Сложные положительные ионы-связки, играющие, как выяснилось, большую роль в физике D-области, очень неустойчивы. Образно говоря, они могут развалиться от малейшего прикосновения. А ведь прикосновение ракеты, налетающей на неподвижный газ со скоростью 1 км в секунду, трудно назвать "малейшим". Возникла опасность, что те ионы, которые масс-спектрометр измеряет в нижних слоях,- не что иное, как жалкие осколки значительно более сложных (и соответственно более громоздких и неустойчивых) ионов-связок, реально существующих в атмосфере и распадающихся при встрече с прибором под действием различных факторов (ударная волна движущейся раке ты, электрическое поле прибора и т. д.). Значит, одной лишь откачной системы мало - нужны еще специальные ухищрения, чтобы избавиться от разрушения сложных ионов.
А отрицательные ионы. Ведь проблемы их измерения не стояло при исследованиях состава ионосферы выше 100 км. Значит, здесь для масс-спектрометристов вообще "terra incognita". Да плюс те же самые трудности с возможным распадом сложных отрицательных ионов-связок на более простые в самом процессе измерений.
Нужно ли, учитывая все это, удивляться, что в области D мы далеки от того положения с исследованием ионного состава, которое имеется в других ионосферных областях.
Итак, сложность получения экспериментальной информации о строении и составе ионосферы ниже 100 км очевидна. Несмотря на это, естественно, делаются все новые и новые попытки изучать D-область различными методами. Используют радиоволны, излученные с ракеты, модифицируют идею поглощения радиоволн, усовершенствуют зондовую методику, применяют методы, основанные на тонких эффектах распространения радиоволн, таких, как перекрестная модуляция, частичное отражение, взаимодействие с ионосферной плазмой сверхдлинных радиоволн и т. д. И нет недостатка в профилях, скажем, электронной концентрации, измеренных в разных местах различными приборами в разных условиях. Но беда состоит в том, что, получая в разных измерениях сильно отличающиеся результаты, мы каждый раз должны решать, является ли это отражением реальной изменчивости самой D-области или результатом ошибочности одного из примененных методов.
Ищем источник ионизации
"Одинокой области D нужен приличный источник ионизации для воздействия в дневное время. Обращаться по адресу: Земля, ионосфера, высота 65 - 85 км". Так, вероятно, должна выглядеть проблема, если перевести ее на язык доски объявлений.
Ну а если говорить серьезно, то поиски источника ионизации в D-области доставили исследователям немало хлопот.
Мы уже знаем, что солнечное ультрафиолетовое излучение с λ<1000 Å не проникает в атмосферу ниже 120 - 140 км. Оно является главной причиной существования основной части ионосферы. Его ближайший помощник - рентген с длиной волны 10 - 100 Å - ионизует нейтральные частицы на высотах 90 - 120 км, обеспечивая тем самым существование области Е. Но и он не может пробиться сквозь толщу нейтральных частиц на меньшие высоты.
Остается еще более коротковолное излучение с λ<10 Å. Кванты этого излучения благодаря своей высокой энергии способны пробиться несколько глубже в толщу атмосферы и вызвать ионизацию на 80 - 90 км. Но и в этом случае интенсивность очень резко падает с уменьшением высоты из-за сильного поглощения. Скорость ионизации, которую может обеспечить рентген, составляет на высоте 80 км 0,004%, или 4×10-5 скорости ионизации на высоте 100 км, а на 70 км эта величина уменьшается до 10-7. Реально оказывается, что эта скорость ионизации способна обеспечить лишь образование самой верхней части области D, лежащей выше 85 км. Очевидно, если бы за ионизацию D-области отвечал только рентген, то эта глава просто не понадобилась бы, так как не было бы ни проблем, ни загадок, ни самой D-области. Но она есть, со всеми своими проблемами. Значит, есть и другие источники, ее питающие, помимо рентгена. Один из таких источников - галактические космические лучи. Последние суть ядра тяжелых элементов прилетающие из просторов галактики и вторгающиеся в атмосферу. Энергия этих частиц столь велика, что они свободно достигают поверхности Земли или, во всяком случае, низколежащих плотных слоев. Ни о каком поглощении космических лучей на ионосферных высотах, которые интересуют нас, нет и речи.
Наполеон притягивает и отталкивает, завораживает и вызывает неприятие, но никого не оставляет равнодушным. В 2019 году исполнилось 250 лет со дня рождения Наполеона Бонапарта, и его имя, уже при жизни превратившееся в легенду, стало не просто мифом, но национальным, точнее, интернациональным брендом, фирменным знаком. В свое время знаменитый писатель и поэт Виктор Гюго, отец которого был наполеоновским генералом, писал, что французы продолжают то показывать, то прятать Наполеона, не в силах прийти к окончательному мнению, и эти слова не потеряли своей актуальности и сегодня.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.