Популярная аэрономия - [30]
Роль этого механизма в создании изрезанностей на распределении электронной концентрации прекрасно и наглядно подтверждается при сопоставлении одновременных измерений электронной концентрации и скорости горизонтального ветра. Одно из таких сопоставлений (взятое из оригинальной работы) приведено на рисунке: точки сходимости и расходимости на профиле вертикального дрейфа, вызванного горизонтальным ветром, действительно соответствуют максимумам и минимумам на профиле электронной концентрации.
Группа японских ученых, много сделавших для развития гипотезы рассеянного излучения, провела серию одновременных измерений [е] и структуры ветра на высотах 100 - 170 км. Авторы получили, во-первых, что профиль электронной концентрации в течение ночи сильно изменяется. Происходит смещение максимумов и минимумов, понижение "долины" и т. д. И во-вторых, все это изменение полностью следует за изменением в течение ночи структуры горизонтальных ветров.
Итак, гипотеза рассеянного излучения, привлекая ветер, дала очень красивое решение задачи о ночном источнике ионизации на высотах 100 - 170 км. Значит ли это, что проблема решена полностью и можно к ней не возвращаться? Увы, нет. Все, что мы говорили о согласии теории и эксперимента, относилось к невозмущенным условиям, когда ночные электронные концентрации достаточно низки (скажем, на высоте 120 км порядка (2 ÷3) 103 см-3). Но общее количество электронов в ночной области высот 100 - 170 км сильно меняется. И обеспечить нужную скорость ионизации в случае достаточно высоких [е] (на высоте 120 км это будет соответствовать примерно 104 см-3) рассеянное излучение не может. Не может оно объяснить и того факта, что случаи более высокой ионизации демонстрируют явную связь с моментами повышенной геомагнитной активности.
Значит, мы снова возвращаемся к корпускулярной гипотезе. Но теперь с несколько других позиций. Корпускулы нужны нам, чтобы объяснить повышение ионизации над "фоном" (даваемым рассеянным излучением) при возмущениях магнитного поля Земли. Но нужны-то они нужны, а вот действительно ли они существуют? Ведь что касается измерений самих электронов с E=1÷10 кэВ, то измерять их трудно, и результаты разных авторов расходятся. Одни "видят" их своими приборами и получают достаточные величины потоков для обеспечения g. Другие "не видят" совсем или получают столь малые потоки, что о вкладе в ионизацию E - области и говорить не приходится. Третьи... Третьи не измеряют ни того, ни другого, но задают простой вопрос: откуда на средних широтах могут взяться электроны столь малых энергий? И это очень неприятный вопрос для сторонников корпускулярной гипотезы. Ведь, если бы эти электроны пришли извне, земное магнитное поле должно было бы их отбросить к полюсам, в высокоширотную ионосферу. А если они образовались внутри ионосферы, то где и с помощью какого механизма?
Вот в этом-то и состоит суть современной проблемы ночной ионизации. Мы получаем все больше убедительных аэрономических доказательств роли корпускул в ночной области Е на средних широтах, но еще не имеем ни непреложного экспериментального доказательства существования необходимых корпускулярных потоков, ни теоретического объяснения их природы.
А в остальном, как говорится, все вполне ясно.
Борьба динамики и фотохимии
Мы поговорили подробно об ионосфере на высотах 100 - 200 км. Теперь поднимемся выше, в область F2, где расположен главный максимум распределения электронной концентрации. Существование этого максимума известно давно; именно он лучше всего наблюдается с наземных ионосферных станций. Но вот как и почему он образуется? Для ответа на этот вопрос уже недостаточно всего, что мы знаем о фотохимии (т. е. о скорости ионизации и рекомбинации) заряженных частиц. Необходимо рассматривать их перераспределение в результате динамических процессов. Попробуем понять, почему это необходимо.
На высотах слоя F2 уравнение фотохимического равновесия для электронной концентрации записывается в виде (26):
где β - линейный эффективный коэффициент рекомбинации.
Он определяется скоростью трансформации атомных ионов О+ и N+, которые образуются в результате ионизации атомов О и молекул N2 - основных нейтральных частиц на этих высотах,- в молекулярные, рекомбинирующие с электронами по реакциям диссоциативной рекомбинации. Трансформация эта происходит при участии нейтральных молекул N2 и О2 в основном по реакциям:
Значит, коэффициент р прямо пропорционален концентрациям молекулярных составляющих атмосферы. А скорость ионизации g? Величина g определяется количеством нейтральных атомов, поскольку они являются основной ионизуемой компонентой на рассматриваемых высотах. Что же получается? Концентрация электронов, согласно формуле (26), прямо пропорциональна концентрации атомов и обратно пропорциональна концентрации молекул, т. е. грубо говоря, [е]∞[A]/[М]. Поскольку основными нейтральными атомами в области F2 являются атомы кислорода, а основными молекулами - молекулы азота, пишут более конкретно: [e]∞[О]/[N2]. Отметим себе, это простое соотношение - сегодня его рассматривают как ключ к решению многих проблем F - области. А сейчас вернемся к основному вопросу, почему фотохимия одна не в силах объяснить существование области F2.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.