Популярная аэрономия - [23]
Стоит обратить внимание еще на одну характерную деталь. Из четырех процессов, которые мы выбрали для примера, два содержат в правой части атомы азота, а в левой - молекулы N2. Значит, ионно-молекулярные реакции кроме перераспределения ионов могут приводить и к диссоциации молекул (скажем, N2) на атомы. Для кислорода это почти несущественно, а вот для образования атомного азота... Но об этом мы поговорим в одной из следующих глав.
Нас, как всегда, в первую очередь интересует эффективность данного типа процессов, т. е. константы скорости ионно-молекулярных реакций. Нужно отметить, что разброс значений у для различных ионосферных реакций гораздо больше, чем разброс значений α*. Как мы только что видели, для константы диссоциативной рекомбинации при 300 К разница между быстро рекомбинирующим ионом окиси азота и медленно рекомбинирующим ионом N^ относительно невелика - два с небольшим раза. А в случае ионно-молекулярных реакций диапазон у при комнатной температуре достигает двух порядков величины - от 10-12 см3×с-1 до 10-10cм3×c-1.
Но важно, конечно, не это, а то, знаем ли мы эти константы достаточно надежно, чтобы использовать их для аэрономических расчетов? В целом на этот вопрос сегодня следует ответить утвердительно. После многих лет поисков, споров и ошибок мы знаем сейчас величины γ для основных ионно-молекулярных реакций и их зависимость от температуры. Как ионно-молекулярные реакции вписываются в общий цикл процессов, мы увидим в следующем параграфе, а сейчас расскажем о проблеме, показывающей, насколько сложны вопросы, связанные с ионно-молекулярными реакциями.
Есть такое понятие - "колебательная температура", или "температура колебательного возбуждения". Дело в том, что практически при любой температуре газа часть молекул этого газа будет находиться в состоянии колебательного возбуждения. С ростом температуры количество колебательно возбужденных молекул быстро растет. Однако возможна ситуация, когда температура газа не меняется, а количество (процент) колебательно возбужденных частиц растет (скажем, за счет фотохимических процессов). В этом случае рост числа возбужденных частиц можно приписать росту некоторой эффективной температуры - температуры колебательного возбуждения Тк. В самом простом случае Тк просто равна обычной (кинетической) температуре газа Тн. В остальных случаях (при наличии дополнительных источников возбуждения) Тк больше, чем Т н.
Группой американских исследователей под руководством Фергюсона, заложивших основы наших сегодняшних представлений о величинах γ, в 1969 году был получен неожиданный результат.
Колебательная температураОказалось, что константа самой важной ионосферной ионно-молекулярной реакции (16) зависит от колебательной температуры участвующих в ней молекул азота. Причем не просто зависит, а очень сильно зависит. При изменении Тк от 300 до 1000 К константа γ16 возрастала в 100 (!) раз.
Этот факт получил огромный резонанс среди специалистов по аэрономии. Возник вопрос о пересмотре чуть ли не всей схемы ионизационно-рекомбинационных преобразований в ионосфере. Однако до этого дело пока не дошло. При внимательном подходе выяснилось, что такой драматический эффект получается, когда сам газ остается холодным, при комнатной температуре. А при температуре, скажем, 1000 К увеличение колебательной температуры уже не ведет к росту γ16 более чем в 2 раза. А поскольку нас в ионосфере интересуют как раз температуры Тн в 1000 К и выше, эффект колебательного возбуждения не должен как будто играть такой страшной роли, как показалось сначала.
Однако проблема не снята с повестки дня. Дело в том, что для объяснения ряда эффектов в области F2 ионосферы требуется предполагать зависимость константы реакции (16) от условий. Но от каких? Все от той же колебательной температуры азота? Или, может быть, как предложили недавно, от электронной температуры, которая сильно меняется на высотах максимума F2? Ответ еще предстоит найти.
Что во что переходит или окончательная схема процессов
Мы рассмотрели все этапы той карусели заряженных частиц, которая непрерывно идет в верхней атмосфере и называется ионизационно-рекомбинационным циклом процессов. Соединим теперь отдельные части и посмотрим на картину преобразования ионов и электронов в целом. Помним только, что речь идет о дневной ионосфере на высотах 100 - 200 км, где нет ни отрицательных ионов, ни ионов-связок, которые так усложняют жизнь в области D, и где можно не беспокоиться о динамических процессах. Итак, в результате фотоионизации образуются положительные ионы и электроны. Электроны, как говорится, все на одно лицо - их различить невозможно. А вот ионы образуются разные. В различных количествах. И их дальнейшая судьба складывается по-разному.
Атмосфера на высотах 100 - 200 км, как мы знаем, состоит из молекул и атомов азота и кислорода. Значит, именно ионы N2+, О2+, О+ и N+ образуются в результате фотоионизации. О+ и N+ - ионы атомные. Для них нет быстрой реакции рекомбинации с электроном. Значит, их судьба ясна - они рано или поздно гибнут в ионно-молекулярных реакциях, образуя другие ионы. Какие именно? И это ясно - ионы с меньшим потенциалом ионизации, т. е. О2+ и NO+. А вот у образующихся молекулярных ионов N2+ и О2+ судьба сложнее. Два типа процессов борются за их уничтожение: диссоциативная рекомбинация и ионно-молекулярные реакции. Исход этой борьбы различен для O2+ и N2+. Ионы молекулярного кислорода гибнут в основном в реакциях рекомбинации с электронами, и только на высотах, где много молекул окиси азота (область Е и несколько выше), на судьбу этих ионов начинает влиять реакция О2+ с NO. А вот на концентрацию ионов N2+ диссоциативная рекомбинация совсем не влияет. Слишком велика активность этих ионов в ионно-молекулярных реакциях - эти реакции целиком и определяют гибель N2+. Если выразить все в терминах "времени жизни", то это будет выглядеть так: время жизни N+ относительно ионно-молекулярных реакций много меньше, чем время жизни N2+ относительно диссоциативной рекомбинации.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.