Популярная аэрономия - [20]

Шрифт
Интервал


4. Равновесные концентрации ионов

Итак, нас интересует дальнейшая судьба ионов, родившихся в акте фотоионизации. Что происходит с ними потом?

Прежде всего, динамические процессы могут в принципе унести их на большое расстояние от места рождения, в область атмосферы с другими условиями. Однако о такой ситуации, действительно наблюдаемой в области F2 и выше, мы поговорим чуть позже. А сейчас рассмотрим, как и договорились, область высот 100 - 200 км. Принято считать, что на этих высотах динамика не влияет заметно на заряженные частицы, во всяком случае днем.

Давайте посмотрим, почему.

Что такое "время жизни"

В фотохимии используют известное физическое понятие "время жизни данной частицы" (иона, электрона, нейтрального атома и т.д.).

Время жизни частицы

Оно обозначается обычно τ и представляет собой время, которое частица (назовем ее X) успевает просуществовать между своим рождением в одном процессе и гибелью в другом. Если под "другим" понимается любая реакция, в которой участвует наша частица X, то и т будет просто фотохимическое время жизни, или время жизни относительно фотохимических процессов. Если же под "другим" понимать какую-то конкретную реакцию, то мы получим время жизни относительно этой реакции. Когда имеется несколько реакций, в которых может участвовать данная частица, сравнение соответствующих времен жизни дает нам представление о том, какая из реакций доминирует. Та из них, время жизни относительно которой меньше, будет являться основным процессом гибели частиц X.

Поскольку мы не раз будем оперировать понятием "время жизни"' и сравнивать величину τ для разных процессов, уместно, видимо, пояснить все сказанное примером. Пусть нас интересует, во-первых, время жизни электронов днем на высоте 160 км и, во-вторых, какой из трех процессов рекомбинации -

Радиативная рекомбинация атомных ионов. Формула 6

рекомбинация атомных ионов при тройных соударениях. Формула 7

Диссоциативная рекомбинация молекулярных ионов. Формула 8

- определяет гибель электронов на данной высоте.

Первый процесс - радиативная рекомбинация атомных ионов, второй - рекомбинация атомных ионов при тройных соударениях" (М - любая третья частица), а третий - диссоциативная рекомбинация молекулярных ионов. Пусть нам известны константы всех трех процессов и концентрации частиц:

Константы всех трех процессов и концентрации частиц

Вероятность участия η-частицы (в нашем случае - электрона) в данной реакции равна произведению константы скорости и концентрации других участвующих частиц. Для реакций (6) - (8) это будет выглядеть следующим образом:

Формула 9

Ну а время жизни обратно пропорционально вероятности участия:

Время жизни частиц

Оно и понятно: чем активнее частица участвует в данной реакции (чем больше г)), тем меньше время жизни, и наоборот. Подставляя теперь конкретные значения параметров, получаем:

Конкретные значения

Итак, электрону необходимо подождать 5 миллионов секунд (более 10 лет), прежде чем он сможет принять участие в реакции радиативной рекомбинации (6). Для участия в реакции (7) надо ждать еще больше - 5×1010 с. Но ждать столько ему, конечно, не придется: в среднем через 33 секунды после рождения он погибает в акте диссоциативной рекомбинации.

Вот мы и получили ответы на интересовавшие нас вопросы. " Беря наименьшую из полученных величин τ, мы имеем фотохимическое время жизни электрона в наших условиях. Оно равно 33 секундам. Сравнивая времена жизни относительно всех трех процессов, или, что то же, вероятности участия η, мы видим, что в процессах гибели электронов, безусловно, доминирует реакция диссоциативной рекомбинации. Вероятность участия электрона в этой реакции в сотни тысяч раз больше, чем вероятность участия в реакции радиативной рекомбинации или рекомбинации при тройных соударениях.

Мы знаем теперь, что такое фотохимическое время жизни. И нам легко понять, какую важную роль это понятие играет в решении вопроса о том, как взаимодействуют фотохимия и динамика. Ибо динамический процесс может действовать на частицу (перемещать ее), только пока частица живет - в течение времени τ. Следовательно, чем больше τ, тем дальше унесут частицу динамические процессы.

Вернемся к процессам (6) -(8) и рассмотрим такой пример. Пусть на нашей высоте 160 км действует горизонтальный дрейф заряженных частиц вдоль параллели со скоростью 0,1 см/с. И пусть (исключительно для примера!) не существует ни реакции (6), ни реакции (8), а гибель электронов определяется реакцией тройных соударений (7). Время жизни электрона тогда равно 5×1010 с Все это время он будет потихоньку (V = 0,1 см/с) дрейфовать вдоль параллели и отдрейфует на 5×1010×0,1 =5×109 см (!). А это половина земного шара! Ясно, что в этом случае ни о каком фотохимическом равновесии не может быть и речи, ибо в данный . момент в данном месте будут находиться электроны, родившиеся ; в разных местах, в разных условиях и в разное время. Например, не будет разницы между дневными и ночными концентрациями электронов, ибо ночью ионосфера окажется полна электронов, родившихся вчера днем и позавчера днем, и днем много лет назад...


Рекомендуем почитать
Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Черное море

В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.