Понять небо - [77]

Шрифт
Интервал

QNE — высотомер показывает высоту, если давление над уровнем моря 1013,25 мб. QNE — тоже, что и барометрическая высота. QNH эквивалентно QNE, когда давление на уровне моря 1013,25 мб.

На самом деле наши высотомеры никогда не показывают истинную высоту потому, что условия, соответствующие стандартной атмосфере практически не встречаются, а приборы оттарированы на изменение показаний высоты в соответствии со стандартным изменением давления. Это общая проблема, и все высотомеры страдают этим в одинаковой мере. Точность их показаний вполне достаточна для полетов.


ЭФФЕКТ КОРИОЛИСА

В векторном анализе сила отклонения, действующая на материальную точку определяется:

D = 2∙mVω∙Sin φ,

где m — масса материальной точки,

V — скорость частицы

ω — угловая скорость земли = 2∙π — радиан/час

φ — широта

Из этой формулы видно, что чем больше широта, тем больше эффект Кориолиса. Эта сила максимальна на полюсах и равна нулю на экваторе. Также замечаем, что сила пропорциональна скорости точки. Если V = 0, то D = 0.

В северном полушарии эта сила направлена вправо от движущейся точки. Если точка движется от центра высокого давления, то она будет заворачивать вправо и двигаться вокруг центра. Это движение инициирует центробежную силу, которая имеет тенденцию уменьшать градиент давления. Противоположная картина наблюдается в области пониженного давления. Здесь ветер вокруг центра низкого давления имеет тенденцию быть сильнее, чем в антициклоне. Торнадо, ураганы, смерчи возникают именно в циклонах.



СУХИЕ ВЕТРЫ

Причину возникновения теплых сухих ветров (chinook, фен и др.). которые дуют на подветренных склонах, можно понять проанализировав изменение температуры воздуха, движущегося над возвышенностью. На рисунке через дробь указаны слева температура воздуха, а справа температура точки росы.

Воздух поднимается адиабатически (без обмена теплом, охлаждаясь примерно 1 °C/100 м из-за расширения) пока не достигнет высоты точки росы (в данном случае 1220 м), где начнется конденсация. С превращением водяных паров в дождь выделяется дополнительное тепло и воздух уже меньше охлаждается (примерно 0,82 °C/100 м). Это продолжается до вершины горы. На подветренном склоне воздух быстро нагревается сжимаясь и конденсация прекращается. В дополнение воздух нагревается примерно 1 °C/100 м и температура на подветренном склоне выше чем на той же высоте наветренного склона. Кроме того воздух очень сухой из-за того, что отдал много влаги осадками.



ТЕРМИЧЕСКАЯ BOUYANCY

Термическая bouyancy (выталкивающая сила, действующая на некоторый объем более теплого воздуха, а значит более легкого) сильно увеличивается после начала образования облаков при высвобождении скрытого тепла когда имеет место процесс конденсации. До формирования облаков скорость вверх может уравновешивать ее с силами сопротивления. Bouyancy базируется на принципе Архимеда:



Bouyancy равна произведению массы на ускорение гравитации и на отношение превышения температуры воздуха в термике к температуре окружающего воздуха. Выразив массу через объем и плотность, мы имеем:



Движение термического потока вверх без ускорения будет когда bouyancy равна силе сопротивления, то есть D = В


Из этого равенства видно, что скорость потока вверх зависит от двух факторов: разности температур и диаметра потока. Разность температур зависит от того, насколько сильно нагрелся воздух при формировании потока и от градиента. Чем больше диаметр термика, тем больше его скорость. Таким образом можно сделать вывод, что чем больше поток, тем быстрее он поднимается при том же градиенте.

Термический поток ускоряется до той высоты, где уравновешиваются сила сопротивления и bouyancy. Позднее он замедляется с уменьшением градиента и при перемешивании с окружающим воздухом. Мы можем сделать вывод, что замедляясь с высотой, термик движется в более стабильных условиях, ускорение потока говорит о нестабильности, как показано ранее на рисунке 180.


НАЧАЛЬНАЯ ТЕМПЕРАТУРА ОБРАЗОВАНИЯ ТЕРМИЧЕСКИХ ПОТОКОВ

Очень важной информацией для парящих пилотов есть начальная температура образования термических потоков и время начала их образования (trigger time, trigger temperature), которые определяют начало термичной погоды. На рисунке мы видим градиент температуры с ночной инверсией у земли (толстая линия). Для того, чтобы термический поток поднялся выше инверсии, он должен нагреться у поверхности до температуры не менее 15° (точка А), в противном случае он будет тормозиться в слое инверсии.

Заштрихованная площадь треугольника пропорциональна количеству тепла требуемому для изменения градиента температуры. Мы можем посчитать эту площадь следующим образом: умножить высоту треугольника (в данном случае 610 м) на половину разности температур (здесь 15° -1° = 14°). Получим в этом примере 610 м — 7,0° = 4270 градусо-метров.



Следующий шаг: надо определить сколько тепла понадобится для этого изменения. Диаграмма показывает ожидаемый прогрев в ясное утро на широте 45°. Если ваша широта больше или меньше, сдвигайте кривые вниз или вверх на 1/2 часа на каждые 5° изменения широты. Сплошные линии обозначают температуру умноженную на 300 м. Например, линия 6100 °C∙м говорит о количестве тепла, достаточном для нагрева слоя воздуха толщиной 305 м на 20°, слоя 610 м на 10° и т. д.


Рекомендуем почитать
Народное творчество, 1991 № 12

Журнал "Народное творчество" 12-91.


Мебель в квартиру. Раскроем красоту камня...("Сделай сам" №3∙1998)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Евроремонт. Убранство вашей гостиной... ("Сделай сам" №4∙1997)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Удивительные факты о кошках

Кошки считаются самыми популярными домашними животными. Они стали спутниками человека более 10000 лет назад. Сегодня эти чудесные, милые зверушки дарят нам радость, поднимают настроение и даже могут лечить. Но сколько еще загадок скрывают наши хвостатые питомцы! Например, не многие опекуны знают, что их любимый кот – хищник. Почему кошки любят больше наших друзей, как выглядит окружающий мир глазами кошки, какие запахи они ненавидят, могут ли предсказывать будущее и на самом ли деле кошки видят духов? Как думает кот? Может ли он узнать себя в зеркале? Ответы на эти и многие другие вопросы можно найти в этой книге.


Новая книга оригами. Волшебный мир бумаги

В данной книге найдет что-то интересное для себя как начинающий оригамист, так и настоящий «бумажных дел мастер». Кто-то благодаря ей изучит азы древнего вида искусства, кто-то расширит свой запас знаний и почерпнет новые идеи.


Живые игры

Живые игры — это команда из 7 человек. Мы делаем игры, которые улучшают и помогают; решаем проблемы, играя. Проблемы бизнеса, студентов, преподавателей и госчиновников. В Москве, в Санкт-Петербурге, в Сибири, на Урале и Дальнем Востоке, за границами России — хорошие игры не знают границ. Где границы самих игр, их возможностей? Не знаем, впрочем, никто не знает. Но играть увлекательнее, чем просто знать все ответы.