Поистине светлая идея. Эдисон. Электрическое освещение - [6]

Шрифт
Интервал

И вот в 1811 году датский физик Ханс Кристиан Эрстед (1777-1851) открыл явление, свидетельствующее об определенной связи между электричеством и магнетизмом: протекающий по проводнику электрический ток отклонял стрелку компаса, которая представляла собой не что иное, как магнит (см. рисунок 1). Француз Андре-Мари Ампер (1775-1836) продолжил исследования Эрстеда. Он обнаружил, что провод, через который проходит электрический ток, ведет себя подобно магниту: два параллельных провода, через которые ток протекает в одном направлении, притягиваются, а если ток в них течет в противоположных направлениях, то они отталкиваются. Французский ученый выяснил, что провод, намотанный на цилиндрическую катушку, по которому пропущен электрический ток, ведет себя как намагниченный брусок: он притягивает или отталкивает намагниченные предметы (см. рисунок 2). Все особенности магнитных явлений могут быть объяснены с помощью взаимных сил, возникающих при движении электрических зарядов.


ПРИНЦИП РАБОТЫ ЭЛЕКТРОМАГНИТА

Когда электрический ток протекает по проводу, он создает вокруг себя магнитное поле, однако поле, возникающее вокруг одиночного проводника, довольно слабое (А). Если обмотать провод вокруг катушки, то количество линий магнитного поля возрастает, так что поле получается более интенсивным (В).

Магнитное поле становится еще более сильным, если внутрь катушки поместить железный стержень (С).



В 1825 году экспериментатор в области электричества Уильям Стёрджен (1783-1850) изобрел электромагнит. Его новаторская идея состояла в том, чтобы взять кусок железа в форме подковы и обмотать его проволокой. Когда через обмотку пропускался ток, индуцируемое железом магнитное поле могло поднять вес в 20 раз больше, чем вес самого устройства. Если ток прекращался, магнитные свойства исчезали. Стёрджен регулировал мощность своего электромагнита путем изменения силы тока. Таким образом, это стало первым опытом по применению электрической энергии, способной выполнять контролируемую работу. Изобретение электромагнита в дальнейшем не только открыло дорогу телеграфу, но и дало возможность построить электродвигатель и множество других устройств, на которых основывались технологии последующих лет.


ДЖОЗЕФ ГЕНРИ

Американский ученый Джозеф Генри (1797-1878) открыл электромагнитную индукцию, опираясь на опыт датчанина Эрстеда, лишь затем, чтобы вскоре узнать, что англичанин Майкл Фарадей опередил его всего на несколько месяцев. Электромагнитная индукция заключается в том, что изменяемое магнитное поле создает электродвижущую силу и в состоянии привести в движение электрические заряды. В 1831 году, когда Фарадей использовал это явление при создании первого в мире электрического генератора, Генри довел свои опыты до логического конца, явив миру противоположный по отношению к изобретению его коллеги прибор — электродвигатель. В жизни Фарадея и Генри прослеживалось и много других параллелей: оба они происходили из бедных семей и оба рано пошли работать, вынужденно оставив учебу. Тем не менее они пробили себе дорогу благодаря своим способностям и таланту. В честь Генри в Международной системе единиц названа единица индуктивности «генри». Один генри (Гн) определяется как электрическая индуктивность в замкнутом контуре, в котором создается электродвижущая сила, равная 1 вольту, когда электрический ток, проходящий через контур, изменяется со скоростью 1 ампер в секунду.


Около 1825 года американский ученый и изобретатель Джозеф Генри усовершенствовал электромагнит Стёрджена, использовав железную проволоку с изоляцией, что позволило наматывать ее гораздо плотнее и увеличивало количество витков без риска вызвать короткое замыкание. Так он увеличил силу магнитного поля и тем самым мощность электромагнита. Кроме того, важным элементом стало реле, которое Генри изобрел несколько позднее (см. рисунок 3). Комбинация этих двух компонентов позволила ему создать первую работающую систему электрической телеграфии.

Реле — это электромеханическое устройство, используемое как размыкатель электрического контура. С помощью электромагнита оно приводит в действие контакты, которые позволяют замыкать и размыкать электрические цепи. Генри применил реле в своем телеграфе для преобразования входного сигнала низкой мощности в новый сигнал. Таким образом стало возможным отправлять на большие расстояния сообщения, составленные из цепочки электрических импульсов. Это произошло в начале 1830-х годов.

Электромагнитное реле Джозефа Генри в двух разных положениях.


ТЕЛЕГРАФ МОРЗЕ

Как случалось во многих областях техники во время промышленной революции, многочисленные изобретатели из разных стран работали параллельно друг с другом над развитием эффективных систем электрической телеграфии. В годы, последовавшие за изобретением Генри, появилось множество других похожих изобретений, которые не работали. В этот период новаторской лихорадки первый, кто публиковал свои научные изыскания, тем самым устанавливал свое авторство, и в то же время тот, кто первым получал патент на изобретение, владел всеми правами, дававшими экономические выгоды. Джозеф Генри, который в 1831 году изобрел телеграф, не хотел патентовать его, считая, что любое знание должно свободно распространяться по миру. И только Самуэль Финли Морзе (1791-1872), взяв для этого кредит, изготовил первую надежно работающую модель телеграфа в 1844 году. Он воспользовался помощью Генри, предоставленной ему без колебаний, — помощью, которую Морзе нехотя вынужден был принять.


Еще от автора Маркос Хаэн Санчес
Двустороннее движение электричества. Тесла. Переменный ток

Никола Тесла был великим мечтателем, идеи которого нашли свое применение только через 100 лет после их появления. Несмотря на то что именно ему принадлежит идея создания двигателя переменного тока, благодаря которому электричество пришло в дома и заводы XX века, этот сербско- американский ученый умер в нищете, забытый своими современниками. Изобретения и открытия, над которыми работал Тесла, бесчисленны: это и пульт дистанционного управления, и самолет вертикального взлета, и беспроводная лампа; также он разработал основы устройства радара, стал предвестником радиоастрономии и проводил опыты по криогенике.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Рекомендуем почитать
Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.