Поистине светлая идея. Эдисон. Электрическое освещение - [18]

Шрифт
Интервал


ХАРАКТЕРИСТИКИ ВОЛН

Пространство вокруг нас заполнено различными волнами, имеющими механическую или электромагнитную природу. Основными характеристиками этих волн являются: длина волны (расстояние между двумя ее пиками), амплитуда (максимальный размах волны) и частота (количество повторений волны в единицу времени, то есть количество вибраций в секунду).


СЛУШАЯ ЭЛЕКТРИЧЕСТВО

Люди, занимавшиеся разработкой телеграфа, задавались вопросом, можно ли превратить звук в изменяемый электрический ток и передавать его на большие расстояния по проводам так же, как передаются по металлической проволоке электрические сигналы, в которых зашифрованы символы. Работы по этой теме начались только в середине XIX века. В ходе своих исследований над возможностью изготовления автомата, имитирующего человека, в 1844 году итальянец Инноченцо Манзетти (1826-1877) выдвинул идею «говорящего телеграфа» (см. рисунок 1) и даже взялся за изготовление его прототипа. Источники расходятся во мнениях, удалось ли ему построить и испытать его; до нас дошли лишь смутные описания системы, которая «напрямую передает слова по обычным телеграфным проводам с помощью устройств, более простых, чем современный телеграф.

Музыка передается великолепно, а что касается слов, то самые отчетливые из них хорошо слышны». И только французский инженер Шарль Бурсель (1829-1912) в точности описал, хотя и теоретически, конструкцию, которую считают первой системой электрической передачи звука. В 1854 году Бурсель изложил в журнале «Иллюстрасьон» (в статье «Электрическая передача слов» от 25 августа 1854 года) основной принцип электрической телефонии и предсказал, что в скором времени звук можно будет передавать с помощью электричества:

«Представьте себе, что вы говорите рядом с подвижным диском, достаточно гибким, чтобы не пропустить ни одной вибрации, производимой голосом. Представьте себе, что этот диск последовательно замыкает и размыкает электроцепь. В таком случае можно поставить на большом расстоянии другой такой диск, который будет воспроизводить эти вибрации».

РИС. 2


Как и в телеграфе, система передачи сообщения основывалась на размыкании электрической цепи, в данном случае с помощью движений гибкого диска, упомянутого в тексте. Этот метод получил название «on/off» («вкл/выкл»).

Статья Бурселя была переведена на многие языки и получила широкое распространение. Она стала источником вдохновения для немецкого ученого и изобретателя Иоганна Филиппа Рейса (1834-1874). В 1861 году Рейс представил во Франкфуртском физическом обществе грубо изготовленное устройство, разработанное по принципам, изложенным Бурселем. Оно состояло из «горшка» без дна: на него с одной стороны была натянута мембрана из кишки, по центру которой была прикреплена подпружиненная швейная игла. Колебания, возникающие от вибрации мембраны, передавались на другой конец иглы и замыкали контакт с проводником, связанным с основной линией, питавшейся от батареи. Этот контакт замыкал и размыкал цепь, приводя в действие другую подобную иглу, связанную с катушкой. Игла вибрировала, производя звук. Рейс усовершенствовал эту примитивную модель, изменив материал мембраны и заменив иглу на изогнутый токопроводящий рычаг (см. рисунок 3). Вместо иглы в приемнике он использовал длинную металлическую пластину, которая гораздо эффективнее передавала звук. На самом деле чем более длинной и широкой она была, тем лучше воспринимала звуковые волны, так как больше становилась поверхность, соприкасавшаяся с воздухом. В некоторых моделях использовался деревянный ящик-резонатор.

Такая конструкция могла передавать музыку и определенные звуки, но не человеческую речь. В первые годы своего развития телефония исследовалась в основном на предмет передачи музыки и пения, хотя передача слов была куда важнее для будущего изобретения. Воспроизвести музыкальные звуки получилось практически сразу, но человеческая речь, гораздо более сложно устроенная из-за различной высоты и интенсивности звука, подобным техническим приборам не давалась.

РИС.З

Передатчик: коническая труба (а), мембрана (b), изогнутый рычаг, приводимый в движение мембраной (с, d), регулятор тока (е). Приемник: электромагнит (f), вибрирующая пластина (g), крепление пластины (h), регулировочные винты (i и j).


Райс продолжал работу над своим изобретением вплоть до того, что у него стала получаться передача гласных и некоторых согласных, но качество звуков оставалось очень плохим. Главная проблема этого устройства была проста и в то же время труднопреодолима: метод «вкл/выкл» Бурселя, взятый из телеграфа, не позволял правильно запечатлеть слово, так как оно представляет собой непрерывную меняющуюся волну, а не набор отдельных независимых импульсов. Практическое воспроизведение речи требует, чтобы передатчик поддерживал постоянный контакт с электрическим контуром, изменяя ток в зависимости от акустического давления, которое он регистрирует.

Альтернативное решение, пусть и несовершенное, не заставило себя ждать. В 1857 году американский изобретатель итальянского происхождения Антонио Меуччи (1808-1889) сконструировал примитивный прибор, главным компонентом которого являлся вибрирующий элемент, связанный с электромагнитом. Он изготовил его, чтобы соединить свою лабораторию, расположенную в полуподвале собственного дома в Статен-Айленде (Нью-Йорк), со своей спальней на втором этаже, где лежала его жена-инвалид. Он назвал свое изобретение телектрофоном и представил его публике в 1860 году. Данное событие было отмечено только итальянскими газетами Нью- Йорка и не вызвало особого интереса. Оно произошло за год до первой демонстрации прибора Рейса во Франкфуртском физическом обществе.


Еще от автора Маркос Хаэн Санчес
Двустороннее движение электричества. Тесла. Переменный ток

Никола Тесла был великим мечтателем, идеи которого нашли свое применение только через 100 лет после их появления. Несмотря на то что именно ему принадлежит идея создания двигателя переменного тока, благодаря которому электричество пришло в дома и заводы XX века, этот сербско- американский ученый умер в нищете, забытый своими современниками. Изобретения и открытия, над которыми работал Тесла, бесчисленны: это и пульт дистанционного управления, и самолет вертикального взлета, и беспроводная лампа; также он разработал основы устройства радара, стал предвестником радиоастрономии и проводил опыты по криогенике.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Рекомендуем почитать
Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.