Поиск неисправностей в электронике - [118]

Шрифт
Интервал

При обслуживании дефибриллятора специалист должен соблюдать осторожность, чтобы случайно не попасть под воздействие прибора самому. К несчастью, дефибриллятор работает в обе стороны. Импульс, который может вернуть синхронизацию при фибрилляции сердца, может также перевести нормально работающее сердце в это состояние. В большинстве дефибрилляторов используются крупные конденсаторы (около 15 мкФ) с очень высоким напряжением, аналогичные показанному на рис. 10.43.



Рис. 10.43.Типичный размер конденсатора дефибриллятора


Когда корпус открыт, всегда есть опасность вступить в контакт с этим зарядом. Прежде чем начать работать со схемой, следует тщательно разрядить конденсатор, соединив его выводы мощным резистором 500–100 Ом. Необходимо соблюдать обычные требования техники безопасности при работе с высоким напряжением. Делайте измерения в цепях только одной рукой, держа другую руку за спиной. Убедитесь, что никакая другая часть вашего тела не находится в кон такте с землей или корпусом прибора. Не носите проводящую бижутерию. Всегда имейте при себе средства защиты глаз. При использовании пробника следите, чтобы ваша рука не касалась прибора.

Дефибрилляторы должны быть очень надежны. Если устройство не сработает во время попытки оживить пациента, часто может не хватить времени, чтобы найти другой. Поэтому тестирование дефибрилляторов должно проводиться регулярно. Нельзя запускать дефибриллятор без нагрузки, в качестве использует для ежедневных тестов простые приспособления. Более сложные приборы используются специалистами для анализа выходного сигнала дефибриллятора. Эти тестеры представляют собой делитель напряжения из набора мощных резисторов, который по отношению к выводам дефибриллятора представляет собой нагрузку 50 Ом, как показано на рис. 10.44.



Рис. 10.44.Измерение формы сигналов и энергии дефибриллятора


Выход делителя напряжения предназначен для вывода форм сигнала на экран осциллографа. Схема формирования прямоугольных импульсов и интегрирования формирует выходной сигнал, который пропорционален поданной энергии. Она осуществляет это, придав сигналу прямоугольную форму и затем измерив площадь области под сигналом (интегрирование). Полученная величина представляется в джоулях или Вт/с.

Для того чтобы можно было воспроизвести импульс дефибриллятора на экране, необходим осциллограф с памятью, установленный в режим ждущей развертки. Источник запуска и уровень регулируются методом проб и ошибок. Наблюдение формы сигнала важно, поскольку оно может выявить неисправности, которые не видны другим способом. Например, дефибрилляция обычно продолжает работать, даже когда кабель внутри оболочки содержит обрыв, хотя внешне выглядит исправным. Энергия просто проскакивает через образовавшийся искровой разрядник в пациента. Для обнаружения обрывов в цепи разряда или неисправных компонентов, связанных с формой сигнала, используются показанные на рис. 10.45 формы сигналов.

Калибровка дефибриллятора обычно включает тестирование уровней выхода и проверку всех блокировочных устройств для предотвращения случайного разряда. Система заряда тестируется и на время заряда.



Рис. 10.45.Тестирование выхода дефибриллятора


Приборы электрохирургии

Электрохирургические приборы используются в течение десятилетий как первичные инструменты в операционной и могут использоваться в качестве скальпеля для разрезания тканей при соединении концов вскрытых кровеносных сосудов. Приборы электрохирургии представляют собой, в основном, высокочастотные генераторы высокой мощности, энергия которых направляется через конец электронного скальпеля и проходит через тело пациента к обратному электроду. Ткань разрезается за счет нагревающего действия поля высокой частоты и плотности, аналогично микроволновой печи. Поскольку мышцы и нервы пациента не реагируют на высокочастотный ток, нет опасности электрического удара. Если высокочастотная энергия имеет возможность выйти из тела через другую цепь, помимо обратного электрода, возникнет опасность ожога. Поэтому в большинстве современных систем используется схема, где цепь, в которую включен пациент, изолирована от земли, при этом ведется постоянный мониторинг непрерывности цепи для гарантии правильного расположения пластины электрода.

Прежде, чем приступить непосредственно к обслуживанию схемы, проверьте наличие очевидных неисправностей, типичных для данных устройств. Например, часто ржавеют, изнашиваются или выходят из строя небольшие сменные детали «петельки», «режущие кромки». Даже при наличии специальных средств для очистки эти детали приходится часто заменять. Обычная жалоба хирурга заключается в том, что ему приходится устанавливать регулятор мощности на более высокое значение, чем обычно. Это может быть показателем того, что хирургический инструмент или весь активный электрод и кабель необходимо заменить.

Большинство современных устройств имеют съемные резцы, которые заменяются для каждой процедуры, но кабели и рукоятки активных электродов обычно стерилизуются и используются повторно. Очень часто медицинский персонал использует кабели и разъемы слишком долго или злоупотребляет ими. К сожалению, нередко специалист по обслуживанию получает электрохирургический инструмент без кабеля, который использовался во время процедуры, с прикрепленной запиской «сломался». Медперсоналу нужно постоянно напоминать о том. что специалиста нужно вызывать при первых признаках неисправности, чтобы можно было провести тщательную диагностику.


Рекомендуем почитать
Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.


В помощь радиолюбителю. Выпуск 8

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


В помощь радиолюбителю. Выпуск 9

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей.


В помощь радиолюбителю. Выпуск 10

В этой книге приведены краткие описания и принципиальные схемы конструкций, ранее опубликованные в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.