Поиск неисправностей в электронике - [117]

Шрифт
Интервал

Инфузионный насос предназначен для пациентов, находящихся в критическом состоянии. Большинство насосов используют тог или иной механизм с нагнетателем объемного типа, который помещается в соответствующую систему трубок для внутривенной инъекции. Пример показан на рис. 10.42.



Рис. 10.42. Съемный инфузионный насос с набором трубок


Электронный прибор осуществляет механическое управление насосом через регулируемый интервал времени и контролирует расход с помощью подсчета капель. В каждый рабочий цикл насос подает фиксированный объем жидкости, который доставляется пациенту независимо от его кровяного давления, высоты расположения емкости или других ограничений. Максимальное давление, которое при этом может быть создано, ограничено механизмом насоса. Если по каким-либо причинам насос не может подавать жидкость, устройство контроля капель регистрирует уменьшившийся расход и подает тревожный сигнал.

Обслуживание оборудования для внутривенной терапии также требует больше, чем просто знания электроники. Это фактически гидравлическая система с управлением электронным прибором. Прежде всего, специалист должен определить, является ли неисправность следствием поломки в гидравлике или в электронике. Это следует оценить, когда прибор еще подключен к пациенту в палате. Медсестер необходимо инструктировать, чтобы при возникновении какой-либо проблемы они вызывали специалиста. Прием насоса или контроллера с биркой «сломан» и т. п. является контрпродуктивным методом ремонта прибора или аппарата. На работу систем внутривенной терапии влияет множество переменных. Медсестер обучают диагностировать и исправлять большинство механических проблем, связанных с подачей жидкости таких как, например перекрутившаяся трубка или неправильно установленный катетер. Однако контроллеры внутривенной терапии иногда подают сигналы тревоги без достаточных причин. В такой ситуации медсестра оказывается в растерянности, а вызвав инженера говорит, что «этот хлам снова подал сигнал без причины». Обычно лучше всего представить как можно больше фактов, касающихся проблемы, а затем отнести насос в мастерскую, даже если причина очевидна (например, подача сигнала о малом заряде батареи насоса, который не включен в сеть). Позже специалист может объяснить то, что он обнаружил, и научить медперсонал основам сервисного обслуживания.

Когда прибор доставлен в мастерскую, можно провести тщательное тестирование для идентификации неисправности и верификации выполнения операций. Типичное сервисное руководство обычно перечисляет признаки и возможные причины или предоставляет диаграмму поиска неисправностей, подобную описанным в предыдущих главах. Диаграммы поиска неисправностей очень помогают, особенно если специалист еще не очень хорошо знаком с системой. В целом, диаграмма — не панацея от всех неприятностей. Она используется для систематического решения проблем. Необходимо также и глубокое понимание работы схемы. Обычно это достигается изучением схем и описаний принципов работы в технической документации.

Прежде, чем отремонтированное устройство будет вновь использоваться, его необходимо протестировать на соответствие его характеристик. Обычный контроллер должен регулировать расход с точностью 2 % от заданной величины. Для проверки этого обычно используется градуированный цилиндр, который измеряет поданное количество нормального соляного раствора за фиксированный период времени (обычно от 1 до 2 ч). Специалист должен также понимать, что связь между числом капель и объемом зависит от свойств жидкости. Все тесты тревожных сигналов и безопасности выполняются в соответствии с описанными в сервисном руководстве процедурами.


Дефибрилляторы

Терапевтический прибор, который приобрел широкую известность после демонстрации телевизионных сериалов о скорой помощи и больницах, это кардиодефибриллятор. Естественный ритм сердца может по целому ряду причин быть нарушен. Фибрилляция — это состояние, при котором клетки сердца больше не сжимаются синхронно, а делают это, скорее, случайным образом: нет, как таковой, сокращающейся мышцы, и, следовательно, сердце не перекачивает кровь. Несчастный умирает, если в течение нескольких минут ситуация не будет исправлена.

Для дефибрилляции сердца через сердечную мышцу пропускается сильный импульс тока. Это заставляет клетки деполяризоваться (сократиться) одновременно. Когда они снова поляризуются (расслабляются) и возвращаются к нормальному состоянию, нервная система сердца вновь получает контроль и устанавливает нормальный синусный ритм.

Два электрода дефибриллятора помещаются на грудь пациента: один — на грудину, а другой — на боковую сторону груди возле верхушки легкого. Импульс в несколько тысяч вольт вызывает ток в несколько ампер через грудную полость. Хотя кажется, что внутри груди должна быть рассеяна огромная мощность, она существует всего несколько миллисекунд, что соответствует энергии около 200–400 Дж. Для дефибрилляции самому сердцу требуется около 50–75 Дж. Но тело является проводником, поэтому не вся энергия, поступающая в грудь, доставляется к сердцу.


Рекомендуем почитать
Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.


В помощь радиолюбителю. Выпуск 8

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


В помощь радиолюбителю. Выпуск 9

В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.


Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей.


В помощь радиолюбителю. Выпуск 10

В этой книге приведены краткие описания и принципиальные схемы конструкций, ранее опубликованные в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.