Подарок Шамбалы - [3]

Шрифт
Интервал

То, что Н. К. Рерих считал Шамбалу отнюдь не мифической страной, доказывает его обращение в Наркомат иностранных дел, возглавлявшийся Чичериным, с просьбой о предоставлении "экспедиционного паспорта". Благожелательное с советской стороны отношение к Рериху и его исследовательской деятельности в Гималаях позволило ему посвятить этому важнейшему делу двадцать пять лет своей жизни.

Всего лишь об одном дне из этого двадцатипятилетия повествует сейчас потрепанный дневник. Переписываю из него то, что могу разобрать.

"Махатм из Шамбалы, угадав желание Рериха написать его портрет, сказал, что он лишь тень мудрости, пославшей его, и не достоин быть увековеченным в красках. Тогда Николай Константинович принял неожиданное решение изобразить Махатма в виде тени на скале. А краски будут вокруг".

Отодвигаю дневник. Я ведь видел вместе с Викторовым эту картину! Видел на выставке произведений Н. К. Рериха на Кропоткинской улице в семидесятых годах! Неземное, бледное небо.

На его фоне многоцветные, синие и желтоватые скалы. На переднем плане удивительно ровный срез скалы, как бы приваленной к груде исполинских камней. И на этом срезе - отброшенная едва взошедшим солнцем тень старца в ниспадающем одеянии, с остроконечной бородой, напоминающей ту, что носил сам Рерих.

Вот оно - документальное доказательство встречи Рериха с гималайским мудрецом, посланцем Шамбалы!

Когда картина с тенью на скале была написана, махатм и Рерих уселись друг против друга на корточки. Между ними оказалась шахматная доска с цифрами на каждой клетке и с набором шахматных фигур.

Удивительно, но Рерих с махатмом не играли, а рассуждали о математическом квадрате, известном в Индии с древнейших времен как "индийский насик". В Европе лишь спустя тысячелетия появился "магический квадрат", названный так за его необъяснимо волшебные свойства.

Одним из позднейших его исследователей стал великий математик XVII века Пьер Ферма.

Не знаю, были ли высказанные некоторыми авторами мысли о родстве шахмат с магическим квадратом отголосками беседы Рериха с мудрецом в Гималаях или авторы эти самостоятельно пришли к аналогичным выводам, но для меня важно, что идеи эти уже высказывались. Так, в 1969 году в издательстве "Просвещение" вышла книга Н. Рудина (ждавшая своего издания более сорока лет!), она вызвала весьма противоречивые отклики. А еще в 1929 году в журнале "64, шахматы и шашки в рабочем клубе"

появилась статья В. Нейштадта на ту же тему. Понадобилось судебное разбирательство, чтобы установить, что книга Рудина была написана ранее статьи Нейштадта (не указавшего источника).

Не моя задача установить этот источник! Я лишь, призывая воображение, переношусь в Гималаи.

Горы! Вокруг непостижимо чистый воздух, сквозь который даже далекие предметы кажутся близкими, а цвета скал ничем не смягчены.

Вот откуда бралась непостижимая палитра красок Н. К. Рериха! Склоны синие, желтые, резко граничащие, небо малиновое...

Такой пейзаж можно представить себе где-нибудь на Марсе с воздухом, разреженным до необычайности! Или на Луне с тенями резкими, как у Рериха, где грани горных образований ничем не сглажены.

Два человека, по-разному одетые, но чем-то похожие друг на друга, сидят по обе стороны шахматной доски.

Махатм говорит размеренно, неторопливо. Его движения замедленны, но уверенны:

- Слава мудрым! Ваши знатоки цифр познали тайны скопления цифр в квадратах. Но напрасно они именуют их "магическими". Магии нет в мире! Нет ее и в цифрах! Все в науках, как и в природе, определяется непреложными законами. Мы, живущие, способны лишь их выявлять. В цифровом квадрате 155, будем так называть его, числа расставлены в расчете, что их сумма в любом горизонтальном или вертикальном ряду всегда одна и та же.

Для квадрата "насик" с 64 клетками сумма равна 260. Это легко проверить. 1+58+3+60+63+8+6+61=260 или 28+21+12+ +5+36+45+52+61=260.

Махатм говорил на превосходном английском языке с безукоризненным произношением, правда, порой растягивая гласные, что придавало его речи певучесть.

- Ты не удивишься, мой мудрый друг, когда две соседние двойки дадут в сумме 4. Но расставить цифры в квадрате, чтобы сумма их во всех рядах и диагоналях была постоянной, куда сложнее. Честь вашим знатокам цифр, нашедшим формулы для решения таких задач. Но пока, к сожалению, лишь для квадратов с нечетным числом полей. "Насик" с его 64 клетками можно построить с помощью специальных фигур.

- Математических символов?

- Скорее "мер", которыми отмеряют расстояние между порядковыми цифрами. У нас в Шамбале поразились, узнав, что наши подсобные математические фигуры послужили для создания великомудрой игры, в которой противоборствуют умы. Восхищения достойна красота, рожденная мудростью. Это закономерно, ибо в основе красоты - порядок, целесообразность, совершенство. А математика со своими фигурами передала игре именно эти свойства.

- Какими же были эти старые фигуры?

- Им не требовалось иметь те удлиненные ходы, которые придали мудрой игре глубину. Но король (главная фигура) имел доступ ко всем прилегающим к его полю клеткам. Ферзь же ограничивался лишь соседним полем по диагонали. Слон (я применяю ваши, современные названия) был подвижнее и мог ходить через клетку по диагонали. Ладья же - через клетку по горизонтали или вертикали.


Еще от автора Александр Петрович Казанцев
Фаэты

Роман «Фаэты» повествует о гибели пятой планеты солнечной системы из-за ядерного взрыва океанов, о судьбе уцелевших героев и их потомков.


Ныряющий остров

Начальником геодезической партии на полярной станции была красавица Татьяна Михайловна. На Большой земле она прыгала с 10-метровой вышки в воду, знала приемы каратэ и здорово играла в шахматы. Да и смелая была женщина — решила произвести геодезическую съемку Ныряющего острова — разгадать неразгаданную загадку Арктики.


Искатель, 1968 № 06

СОДЕРЖАНИЕ:Подколзин Игорь. Один на борту. Рассказ. Рис. П. Павлинова.Биленкин Д. Запрет. Фантастический рассказ. Рис. В. Колтунова.Ребров М. «Я — «Аргон». Литература (отрывки).Айдинов Г. «Каменщик». Рассказ. Рис. Н. Гришина.Серлинг Род. Можно дойти пешком. Фантастический рассказ. Перевел с английского Е. Кубичев. Рис. А. Бабановского.Казанцев Александр. Посадка. Рассказ. Рис. Ю. Макарова.Моэм Сомерсет. Предатель. Рассказ. Перевел с английского Л. Штерн. Рис. Г. Филлиповского.Рассел Джон. Четвертый человек. Рассказ. Перевел с английского П. Охрименко. Рис. С. Прусова.


Пылающий остров

Американский ученый Фредерик Вельт посвятил сорок лет своей жизни поискам формулы, позволяющей за считанные месяцы… погубить человечество. Он превратил воздух над островом Аренида в топливо, в гремучую смесь. Над островом сгорают все новые и новые массы воздуха, стекающиеся со всей планеты. Жадный костер будет пылать до тех пор, пока не уничтожит на Земле всей атмосферы. Кажется, глобальную катастрофу невозможно предотвратить…Иллюстратор: Сергей Трофимов.


Искатель, 1973 № 02

На 1-й и 4-й стр. обложки — рисунок А. ГУСЕВА.На 2-й стр. обложки — рисунок Н. ГРИШИНА к рассказу Ю. Тупицына «Мэйдэй».На 3-й стр. обложки — рисунок В. ЧИЖИКОВА к рассказу Дороти Л. Сайерс «Человек, который знал, как это делается».


Искатель, 1968 № 04

На 1-й стр.обложки — рисунок В.КОШУНОВА к рассказу Д.Биленкина «Во всех галактиках».На 2-й стр.обложки — рисунок Н.ГРИШИНА к рассказу В.Михайлова  «День,вечер,ночь,утро». На 3-й стр.обложки — рисунок В.КОЛГУНОВА к рассказу Ричарда Коннела «Самая опасная дичь».


Рекомендуем почитать
Эскадрон несуществующих гусар

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Дедуктивный метод

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Достойное градоописание

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жалкие бессмертные дождевые черви

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Фиалка со старой горы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


А роза упала на лапу Азора

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.