Почему мы не проваливаемся сквозь пол - [83]

Шрифт
Интервал

Замеренные в опыте величины модуля упругости очень хорошо согласуются с известной жесткостью вандерваальсовых связей и с жесткостью молекулярных кристаллов типа фталоцианина (глава 1).

Оказывается, что углеродные цепочки, характерные для синтетических полимеров (таких, как полиэтилен), очень гибкие, и с термодинамической точки зрения существует весьма сильная тенденция к складыванию их регулярным способом во время кристаллизации. Цепи природных полимеров (например, полисахариды и, в частности, сахар) так не складываются, и потому они намного жестче. Именно этому в значительной мере обязана нестареющая популярность целлюлозы в качестве строительного материала, и, между прочим, это же дает основания журналам мод писать о “хрустящем” хлопке.

Предотвратить складывание синтетических углеродных цепочек на редкость трудно, но как раз совсем недавно коллеги автора получили кристаллы полиэтилена в условиях, когда складывание сводится к минимуму. Модуль упругости этих кристаллов превышал 3500 кГ/мм>2. Ему все еще очень далеко до теоретической величины, но это все-таки примерно в 15 раз выше, чем все достигнутое на полиэтилене прежде.

Как будет это направление развиваться и будет ли оно развиваться вообще - трудно сказать. Ясно лишь, что полиэтилен с цепочками, вытянутыми при кристаллизации в одном направлении, будет совершенно иным материалом по сравнению с тем полиэтиленом, который мы хорошо знаем. Вероятно, существует также принципиальная возможность делать неармированные пластики с модулем Юнга стали и одной восьмой ее плотности. Можно предположить также, что прочность и вязкость такого материала также будут высоки.

Чего можно ожидать от материалов будущего?

Невозможно пророчествовать подробно о том, как будут выглядеть новые материалы. Но мы можем оговорить вполне определенные верхние пределы механических свойств пассивных конструкционных материалов (глава 1). Ясно, что ключевое свойство есть модуль Юнга, поскольку он определяет не только жесткость, но и, в конечном счете, прочность. Наибольшей жесткостью обладает углеродная связь, причем она максимальна как в абсолютном, так и в удельном выражении (относительно плотности). Правда, некоторые ковалентные связи по жесткости мало отличаются от углеродных связей в алмазе. Но в общем-то максимум Е должен быть около 12x10>4 кГ/мм>2, а максимальная величина удельного модуля Юнга - на порядок выше, чем для стали.

Следовательно, возможности улучшения удельных свойств больше, чем абсолютных. Но, вероятно, к этому и следует стремиться.

Можно было бы, наверное, как-то приблизиться к теоретической прочности, то есть примерно к E/10 если бы такая цель имела реальный смысл. Но все дело в том что если бы эта громадная прочность и была получена в большинстве случаев соответствующая ей упругая деформация, которая достигала бы 10%, оказалась бы недопустимой. Более того, такой материал неизбежно был бы хрупким, даже, пожалуй, слишком хрупким.

Более приемлемой следует считать деформацию около 1-2% (такой материал имел бы некоторый запас для торможения трещин - см. главу 4). Это дало бы удельную прочность, на один-два порядка превосходящую удельную прочность стали. Таким образом, мы вправе ожидать максимальную величину удельной жесткости порядка 12-14 жесткостей древесины, стали и других металлов, а для удельной прочности ориентироваться в пределе на 10-100 удельных прочностей стали.

Вероятно, как-то приблизиться к этим свойствам вначале можно будет с помощью материала, армированного параллельными волокнами. Если же прочность и жесткость нужны более чем в одном направлении, тогда придется распределить волокна по разным направлениям и удовлетвориться более низкими свойствами. Но рано или поздно, я думаю, мы получим изотропные материалы, свойства которых во всех трех направлениях будут одинаково хороши.

Это, кажется, и будет пределом, которого мы сможем добиться с пассивными материалами. Продвижение по этому пути - вот занятие, которое занимает в наши дни целую армию материаловедов. Но картина изменится, если мы займемся активными материалами (то есть такими, которые каким-то образом подпитываются энергией) Несколько лет назад к этой идее независимо пришли профессор Бернал и я. В самом деле, снабжая материал энергией, можно придать ему бесконечную эффективную жесткость (как это бывает у животных). А сделать это можно, по-видимому, с помощью пьезоэлектричества.

Важным следствием реализации этой идеи было б не столько повышение прочности, сколько использование бесконечной жесткости. Можно было бы делать очень жесткие конструкции, работающие на сжатие, — телеграфные столбы могли бы быть тонкими, как проволока; крылья самолетов стали бы тоже очень тонкими, почти любая техническая операция выполнялась бы легче и дешевле. Насколько мне известно, в этом направлении никто сейчас не работает. Но если бы даже и начались такие исследования, потребовалось бы весьма много времени, прежде чем удалось получить что-нибудь реальное; но этот путь отвергать, по-видимому, не следует.

Другая очень привлекательная идея связана с самоподстраивающимися конструкциями. По сути своей она также биологическая. Основной принцип здесь заключается в том, что конструкция сама утолщается в местах большего напряжения, и опять-таки сама уменьшается в слабо нагруженных частях. Почти все небиологические конструкции спроектированы неоптимальным способом, они неэффективны и топорны. Можно было бы начать с того, что попробовать оптимизировать какую-нибудь грубо спроектированную оболочку или раму, нагружая ее, например, в гальванической ванне. Но, как и предыдущая идея, сегодня это всего лишь мечта. Я хотел лишь сказать, как велики потенциальные возможности сокращения времени проектирования и изготовления.


Еще от автора Джеймс Эдвард Гордон
Конструкции, или Почему не ломаются вещи

На протяжении всей книги профессор Гордон, как заядлый детектив, занимается поисками преступника, разрушающего все, встречающееся на его пути - дома, мосты, корабли, плотины…Книга посвящена проблемам конструирования и физическим основам теории прочности. Материал излагается очень доходчиво и популярно, с минимумом формул (насколько это вообще возможно).


Рекомендуем почитать
Тонущие города

Описаны древние затонувшие и ныне тонущие города. Рассмотрены различные гипотезы, объясняющие причины гибели древних городов Средиземноморья, Причерноморья и Прикаспия. Даны сведения о наводнениях, подтоплении подземными водами, об инженерной защите Венеции, Нидерландов, Ленинграда и других городов и территорий. Изд. 1-е вышло в 1978 г. в издательстве “Наука”.Для широкого круга читателей.


Водоснабжение, канализация и отопление загородного дома

Налаженное функционирование систем водоснабжения, канализации и отопления – это комфорт и удобство всех проживающих в доме. И если даже не требуется вашего непосредственного участия в монтажных работах (практически все действия подобного типа должны выполняться специалистами, имеющими соответствующие лицензии), все равно необходимы пристальное внимание и контроль. Ведь от того, как будут налажены эти системы, зависит многое, в том числе и уровень эксплуатационных расходов. Поэтому будьте внимательны, подходите к вопросам водоснабжения, канализации и отопления со всей тщательностью и ответственностью.


Современные двери и окна. Новейшие материалы и технологии работ

Без окон и дверей невозможно представить ни одно жилое и офисное помещение. Эти элементы интерьера выполняют не только декоративную, но и защитную функцию, поэтому они являются обязательными. Современные оконные и дверные системы различаются технологией изготовления, используемыми материалами и стоимостью монтажа. Эта книга поможет вам определиться с выбором, а также разобраться в тонкостях и нюансах установки данных конструкций.


Гидроизоляция конструкций, зданий и сооружений

Обобщена и систематизирована информация по производству гидроизоляционных работ. Рассмотрены первичная и вторичная (обмазочная, оклеечная, проникающая, штукатурная, отсечная противокапиллярная, мембранного типа и др.) гидроизоляции. Приведены классификация гидроизоляционных материалов, область их применения, технология гидроизоляции, сведения о механизмах и оборудовании для производства гидроизоляционных работ. Показаны примеры гидроизоляции различных сооружений (мостов, АЭС, подвалов, фундаментов, резервуаров).Для инженерно-технических работников, занимающихся проектированием, строительством и эксплуатацией зданий и сооружений.


Отделочные работы. Ванная, кухня, туалет

Если вы решили отремонтировать ванную комнату, кухню или туалет, обратите внимание на эту книгу. В ней рассказывается о свойствах современных отделочных материалов, описывается технология проведения подготовительных и финишных работ по отделке пола, стен и потолка. Те, кто интересуется дизайном, найдут для себя интересную информацию о стилях интерьера.


Домашний архитектор. Подготовка к ремонту и строительству на компьютере

Проблема ремонта и строительства жилья актуальна во все времена. Ни для кого не секрет, как много нужно внимания, фантазии, точных расчетов и финансовых вложений, чтобы создать в своем доме комфортные условия для работы и отдыха. Но что делать, если вы ничего не понимаете в планировке помещений, отделочных работах и разработке интерьеров, а цены на услуги архитектурно-строительных и дизайнерских фирм отбивают всякое желание затевать ремонт? Обратитесь к специальным программам, которые помогут вам сориентироваться на каждом этапе ремонта и представить, как будет выглядеть дом или квартира в конечном итоге и в какую сумму вам это обойдется.