Почему Е=mc²? И почему это должно нас волновать - [7]

Шрифт
Интервал

Ученые XXI столетия с завистью оглядываются на события начала XIX века. Фарадею не надо было сотрудничать с 10 тысячами ученых и инженеров в CERN[5] или запускать на орбиту телескоп размером с два автобуса, чтобы сделать выдающиеся открытия. CERN Фарадея вполне помещался на его столе и позволял ему вести наблюдения, приведшие к разрушению понятия абсолютного времени. Безусловно, за многие столетия масштаб науки изменился – отчасти потому, что те аспекты окружающего мира, которые не требуют высокотехнологичного оборудования для проведения наблюдений, уже досконально изучены. Нельзя сказать, что в современной науке нет примеров, когда простые эксперименты дают важные результаты, но в общем случае, чтобы раздвинуть границы познания, нужна сложная техника. В Лондоне начала викторианской эпохи Фарадею не требовалось ничего более экзотического или дорогого, чем моток проволоки, магниты и компас, чтобы получить первые экспериментальные доказательства того, что время представляет собой совсем не то, чем нам кажется. Он собрал их, занимаясь тем, что больше всего нравится ученым, – просто работал с недавно открытым электричеством, играл с ним и внимательно наблюдал. Вы можете представить эти темные лакированные столы с тенями от проводов, колеблющимися в свете газовых ламп. Хотя Дэви и поразил публику демонстрацией электрического света в 1802 году в Королевском институте, миру пришлось ждать почти до конца столетия, пока в 1870 году Томас Эдисон не создал пригодную для применения лампочку накаливания. Но в начале XIX века электричество было совершенно новой областью физики и инженерного дела.

Фарадей обнаружил, что если двигать магнит через катушку провода, то во время перемещения магнита в проводе генерируется электрический ток. Он также заметил, что если передать импульс электрического тока по проводу, то стрелка компаса, расположенного вблизи этого провода, отклонится от равновесного состояния. Компас представляет собой не более чем детектор магнитного поля. При отсутствии электрических импульсов в проволоке он выравнивается по направлению магнитного поля и указывает на северный полюс Земли. Таким образом, электрические импульсы создают магнитное поле, такое же, как и магнитное поле Земли, хотя и более мощное – поскольку оно сильно отклоняет стрелку компаса во время прохождения импульса электрического тока. Фарадей понял, что обнаружил глубинную связь между магнетизмом и электричеством, двумя явлениями, которые на первый взгляд кажутся абсолютно не связанными друг с другом. Что общего у электрического тока, проходящего через лампочку, когда вы щелкаете выключателем на стене в гостиной, с силой, притягивающей магнитные игрушки к двери вашего холодильника? Безусловно, такая связь неочевидна, но все же Фарадей посредством внимательных наблюдений установил, что электрический ток создает магнитное поле, а движущиеся магниты генерируют электрический ток. Эти два простых явления, которые сегодня известны как электромагнитная индукция, лежат в основе как производства электроэнергии на всех электростанциях, так и работы любых электродвигателей, используемых нами каждый день, – от компрессора в холодильнике до механизма извлечения диска в DVD-плеере. Вклад Фарадея в развитие индустриального мира трудно переоценить.

Однако достижения в фундаментальной физике редко связаны только с экспериментами. Фарадей хотел понять механизм, лежавший в основе его наблюдений. «Как может быть, – спрашивал он себя, – что магнит, физически не подключенный к проводу, тем не менее генерирует в нем электрический ток? И как может импульс электрического тока заставить повернуться стрелку компаса?» Для этого сквозь пустое пространство между магнитом, проволокой и компасом должно пройти какое-то воздействие: катушке проволоки необходимо почувствовать магнит, проходящий через нее, а стрелке компаса – протекающий на расстоянии ток. В наше время это воздействие известно как электромагнитное поле. Мы уже использовали слово «поле» в контексте магнитного поля Земли. Поскольку это слово употребляется в повседневной жизни, вы, вероятно, не обратили на него никакого внимания. На самом деле поля – одно из наиболее абстрактных понятий в физике. С ними также связана одна из самых плодотворных концепций, необходимых для развития более глубокого понимания природы. Уравнения, лучше всего описывающие поведение миллиардов субатомных частиц, из которых состоит эта книга, а также рука, которой вы ее держите перед глазами, и сами ваши глаза – это уравнения полей. Фарадей представлял себе поля в виде совокупности линий (он их называл линиями тока), исходящих из магнитов и токоведущих проводов. Если вы когда-либо подносили магнит под лист бумаги, на который насыпаны железные опилки, то наверняка видели эти линии. Простым количественным примером поля, с которым вы ежедневно сталкиваетесь, может служить температура воздуха в вашей комнате. Возле радиатора воздух будет горячее, возле окна – прохладнее. Представьте, что вы измерили температуру воздуха в каждой точке комнаты и записали это огромное количество чисел в таблицу. Эта таблица – формальное описание температурного поля в вашей комнате. В случае магнитного поля вы можете представить, что фиксируете отклонение стрелки компаса в каждой точке помещения и составляете формальное описание магнитного поля в комнате. Поле субатомных частиц еще более абстрактно. Его значение в той или иной точке пространства говорит о вероятности обнаружения частицы в этой точке в тот момент, когда вы на нее посмотрите. Мы снова встретимся с этими полями в главе 7.


Еще от автора Джефф Форшоу
Квантовая вселенная. Как устроено то, что мы не можем увидеть

В этой книге авторитетные ученые Брайан Кокс и Джефф Форшоу знакомят читателей с квантовой механикой – фундаментальной моделью устройства мира. Они рассказывают, какие наблюдения привели физиков к квантовой теории, как она разрабатывалась и почему ученые, несмотря на всю ее странность, так в ней уверены.Книга предназначена для всех, кому интересны квантовая физика и устройство Вселенной.На русском языке публикуется впервые.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.