По ту сторону кванта - [85]

Шрифт
Интервал

и применения».

В 1440 году Николай Кузанский написал книгу «Об ученом невежестве», в которой настаивал, что все познания о природе необходимо записывать в цифрах, а все опыты над нею производить с весами в руках.

Утверждение новых взглядов происходило медленно. Например, хотя арабские цифры уже в X веке вошли во всеобщее употребление, но даже в XVI веке повсеместно вычисления производили не на бумаге, а с помощью особых жетонов, которые были еще менее совершенны, чем наши конторские счеты.

Настоящую историю научного метода принято начинать с Галилея и Ньютона. Согласно той же традиции Галилео Галилей (1564–1642) считается родоначальником экспериментальной физики, а Исаак Ньютон (1643–1727) — основателем теоретической физики. Конечно, в их время не было такого разделения единой науки физики на две части, не было даже самой физики — она в то время называлась натуральной философией. Но такое разделение имеет глубокий смысл: оно помогает понять особенности научного метода и, по существу, эквивалентно делению науки на опыт и математику, которое сформулировал Роджер Бэкон.

СУЩНОСТЬ И РАЗВИТИЕ НАУЧНОГО МЕТОДА

Мы настолько привыкли отождествлять понятия «знание» и «наука», что не мыслим себе иного знания, кроме научного. В чем его сущность и особенности?

Сущность научного метода можно объяснить довольно просто: этот метод позволяет добыть такие знания о явлениях, которые можно проверить, сохранить и передать другому.

Отсюда сразу следует, что наука изучает не вообще всякие явления, а только те из них, которые повторяются. Ее главная задача — отыскать законы, согласно которым эти явления протекают. В разное время наука достигала этой цели по-разному.

Древние греки внимательно наблюдали явления и затем с помощью умозрения пытались проникнуть в гармонию природы силой интеллекта, опираясь только на данные чувств, накопленные в памяти.

В период Возрождения стало очевидно, что поставленная цель не может быть достигнута только с помощью пяти чувств — необходимо изобрести приборы, которые есть не что иное, как продолжение и углубление наших органов чувств. При этом сразу же возникло два вопроса: насколько можно доверять показаниям приборов и как сохранить информацию, полученную с их помощью.

Вторая задача была вскоре решена изобретением книгопечатания и последовательным применением математики в естественных науках. Значительно труднее оказалось разрешить первый вопрос — о достоверности знаний, полученных с помощью приборов. По существу, он не решен окончательно до сих пор, и вся история научного метода — это история постоянного углубления и видоизменения этого вопроса.

Довольно скоро поняли, что показаниям приборов, как правило, можно доверять, то есть они отражают что-то реальное в природе, существующее независимо от приборов. (В конце концов убедились, например, в том, что пятна на Солнце — это пятна именно на Солнце, а не дефекты зрительной трубы, с помощью которой они были открыты.) В этот период расцвета экспериментальной физики были накоплены все те знания, на основе которых в конце прошлого века произошел мощный скачок техники.

Однако объем знаний стремительно рос и в начале нашего века привел к кризису в физике. Суть его заключалась в том, что в какой-то момент люди перестали понимать, как соотносить числа, полученные с помощью приборов, к реальным явлениям в природе. Именно в этот момент решающее значение приобрела теоретическая физика.

Причин кризиса было две. С одной стороны, приборы слишком далеко ушли от непосредственных ощущений человека, и поэтому интуиция, руководствуясь их данными, не давала никакой простой картины изучаемых явлений. Тем самым были исчерпаны возможности наглядной интерпретации данных опыта.

С другой стороны, не существовало логической схемы, которая помогла бы упорядочить научные факты и без ссылок на интуицию, привести к таким наблюдаемым следствиям, против которых не мог бы возразить даже здравый смысл.

Кризис преодолели на втором пути: по-прежнему доверяя показаниям приборов, изобрели новые понятия и новые логические схемы, которые научили по-новому относиться к этим показаниям. Решающую роль в такой ломке устоявшихся понятий сыграла квантовая механика. Она не только дала нам власть над совершенно новым миром атомных явлений, но и убедила в том, что показания приборов — это не простая фотография явлений природы: они не относятся к ней непосредственно, а лишь отражают и закрепляют числами наши представления о ней.

С течением времени эти знания совершенствуются и позволяют нам правильно предсказывать все более тонкие явления природы. Факт сам по себе удивительный, и мы его, вероятно, никогда не поймем, но коль скоро он стал известен — мы его используем.

С этим согласны теперь почти все физики. Однако, как и все люди, они хотят понять больше: насколько полна картина мира, нарисованная физикой? Вопрос этот не физический, а скорее философский. Он возникал во все времена, но впервые четко был сформулирован в диалогах Платона.

Платон уподобил ученых узникам, прикованным в пещере спиной ко входу так, что они не видят света, а только тени, движущиеся на противоположной стене. Он признавал, что даже в этих условиях, внимательно наблюдая движение теней, можно научиться предугадывать поведение тех тел, чьи тени видны на стене пещеры. Но знание, приобретенное таким способом, бесконечно далеко от того полного знания, которое приобретает освобожденный узник, выйдя из пещеры.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.