Планетные системы звезд - [5]

Шрифт
Интервал

Предельной возможностью метода, существующего уже около ста лет, до 70-х годов ХХ века считалось нахождение скоростей примерно 300-500 м/с. Попытки обнаружить планеты по признаку периодического изменения знака кеплеровской составляющей, возникающей при обращении звезды вокруг барицентра, было совершенно бесперспективно. Кеплеровские (орбитальные) скорости звезд очень малы. Например, в Солнечной системе кеплеровская скорость Солнца, возникающая под действием притяжения Юпитера, всего 12,5 м/с, Сатурна – 2,7 м/с, а Земли или Венеры – менее 0,1 м/с. Поэтому для поиска экзопланет понадобилось придумать и создать аппаратуру в 100-200 раз более чувствительную.

Второй главный метод поиска – астрометрический, о котором уже говорилось выше. Здесь достигнута точность выше 1 микросекунды дуги, причем есть перспективы улучшения метода. Теоретически существует не менее пяти физических методов поиска, из которых здесь рассматриваются только метод лучевых скоростей (МЛС) и транзиты.

И МЛС, и астрометрический метод тем эффективнее, чем больше масса возмущающего тела (планеты). При этом колебания в положении звезды, которые ищет астрометрия, тем больше, чем дальше гипотетическая планета. Зато кеплеровская составляющая скорости звезды становится ничтожно малой, а наблюдения растягиваются на десятилетия. МЛС, наоборот, тем эффективнее, чем ближе возмущающее тело к звезде. Естественно, для близкого тела необходимая длительность наблюдений получается намного меньшей. До 1995 года исследователи неизменно исходили из массы и периода Юпитера и ничего другого не ожидали.

Стремясь улучшить чувствительность метода лучевых скоростей, в начале 1990-х годов несколько групп в разных странах одновременно занялись его совершенствованием. В 1988 году в Канаде Б. Кэмпбелл и его коллеги сумели зарегистрировать лучевые скорости около 15 м/с. Они сравнивали положение линий в спектре звезды с наложенным на него лабораторным спектром паров фтористого водорода, который, однако, очень неудобен для работы из-за высокой токсичности.

В Швейцарии, в Женевской обсерватории, М. Майор и Д. Квелоц (который тогда был аспирантом Майора) разработали другой спектрометр, где был использован торий-аргоновый стандарт со световодом. В МЛС-наблюдениях во французской высокогорной обсерватории в Верхнем Провансе они достигли на нем предельной чувствительности 13 м/с и в 1994 году приступили к поиску планет у 142 звезд солнечного типа из сравнительно близкого окружения Солнца, в том числе у звезды 51Peg, находящейся на расстоянии 15 пк.

В Сан-Францисском университете в США группа Д. Марси начала планомерный поиск планет еще в 1987 году и к 1995 году уже имела в руках многолетний наблюдательный материал. По предложению П. Батлера, который тогда, как и Квелоц, был аспирантом, фтористый водород в стандарте заменили парами йода (в дальнейшем йодный стандарт в астрономии стал очень "модным"). В газовой фазе йод имеет много спектральных линий как раз в области наиболее удобных линий звезд – 500-600 нм. Но именно из-за многочисленности линий йодного стандарта требуются очень трудоемкая обработка результатов и применение мощного компьютера.

По расчетам, чувствительность нового метода должна была быть высокой и составлять 10 м/с, что легко достигалось в кратковременных тестах. Однако, хотя в ходе ночных наблюдений типичная ошибка результатов составляла всего 5-10 м/с, наблюдения от ночи к ночи давали разброс от 20 до 100 м/с. Хорошие результаты, полученные Д. Марси с коллегами накануне, в следующую наблюдательную ночь казались ошибочными. Шесть лет они дорабатывали и совершенствовали программы обработки. Наконец, в 1994 году их коллега С. Вогт заменил оптику спектрометра в Ликской обсерватории, где выполнялись наблюдения, и сразу же удалось довести порог до 3 м/с. Это вполне позволило бы воображаемому наблюдателю, удаленному на 10 пк (30 световых лет), обнаружить Юпитер по его гравитационному влиянию на Солнце. Однако накопленные материалы требовали нескольких лет компьютерной обработки. Поскольку Марси и Батлер с коллегами знали, что период Юпитера составляет 12 лет, они, похоже, особенно не торопились. Но все же, чтобы ускорить работу, число регулярно наблюдавшихся звезд было сокращено со 120 до 25. Среди отброшенных была и звезда 51Peg, потому что в Йельском каталоге ярких звезд она значилась как нестабильный субгигант и относилась к особому виду звезд. В действительности 51Peg – спокойная звезда солнечного типа, спектральный класс G2.5. Эта ошибка в каталоге для Марси и Батлера стала роковой.

Несколько других групп исследователей тоже накапливали материал, исходя из того, что обнаружима планета с массой не менее Юпитера и с периодом 12 лет.

Метод швейцарских исследователей М. Майора и Д. Квелоца позволял получить результат сразу. Их техника была отлажена, однако уже через несколько месяцев после начала работы возникли проблемы с этой самой 51Peg. Всего за несколько ночей значительная часть лучевой скорости звезды меняла знак, изменяясь на 60 м/с. М. Майор предположил, что причина может быть в неисправности спектрометра. Но уже в декабре 1994 года в руках у Майора и Квелоца оказалась синусоидальная кривая изменения кеплеровской составляющей лучевой скорости 51Peg с периодом (годом планеты) всего 4,2 дня. Исследователи были в затруднении. По массе такая планета должна быть очень большой, чем-то вроде Юпитера, но находится на орбите в восемь раз ближе к звезде, чем даже Меркурий к Солнцу (около 1/20 а.е.), и с периодом 1/1000 периода Юпитера. В существование таких планет никто тогда не мог поверить.


Еще от автора Леонид Васильевич Ксанфомалити
Горные потоки и бассейны на Марсе

Поиск воды и льда на Марсе. Современное состояние исследований в статье доктора физико-математических наук, сотрудника Института космических исследований (ИКИ РАН) Леонида КСАНФОМАЛИТИ..


Ревизия представлений о сухом Марсе

Присутствие жидкой воды на Марсе обычно считается невозможным из-за низких давления и температуры. Однако изучение снимков высокого разрешения позволило обнаружить следы недавних потоков на поверхности Марса, которые радикально изменяют представления о Марсе, как сухой, гидрологически мертвой планете.Если поиск жизни на Марсе следовало начинать с поиска воды, то эта задача, по-видимому, близка к разрешению.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.