Первые три минуты - [81]

Шрифт
Интервал

>1/2), поэтому масштаб великого объединения должен быть огромным. Мы нашли, что для довольно широкого класса теорий великое объединение происходит где-то поблизости от 10>16 ГэВ. Эта энергия не слишком сильно отличается от планковской энергии 10>19 ГэВ. Время жизни протона оценить с достаточно большой точностью трудно, но мы дали приблизительное значение, равное 10>32 лет, которое, видимо, удастся проверить экспериментально уже через несколько лет. (Эти оценки были улучшены более подробными вычислениями, проделанными разными авторами [58].) Мы также вычислили значение параметра смешивания sin>2Θ, которое оказалось равным примерно 0,2. Оно не сильно отличается от значения 0,23 ± 0,02, полученного сейчас в эксперименте [40]. Важной задачей будущих экспериментов с нейтральными токами является улучшение той точности, с которой известна величина sin>2Θ. Интересно узнать, действительно ли она согласуется с предсказанным значением.

Для того чтобы элементарные скалярные частицы, появляющиеся в теории великого объединения, приводили к спонтанному нарушению электрослабой калибровочной симметрии при нескольких сотнях ГэВ, необходимо (и достаточно), чтобы они не приобрели сверхбольших масс при спонтанном нарушении калибровочной группы великого объединения [59]. В этом нет ничего невозможного, но я не смог до конца продумать вопрос, почему это должно иметь место. (Эта проблема может быть связана с давней загадкой, почему квантовые поправки не приводят к огромной космологической постоянной. В обоих случаях мы имеем дело с аномально малым «су-перперенормируемым» членом в эффективном лагранжиане, который следует положить равным нулю. В случае с космологической постоянной это требование должно выполняться с точностью до 10>-50.) Если же нет таких элементарных скалярных частиц, которые не приобретают сверхбольших масс при нарушении калибровочной группы великого объединения, тогда, как я уже упоминал, должны появляться сверхмощные силы, чтобы образовать составные голдстоуновские и хиггсовские бозоны, которые связаны со спонтанным нарушением SU(2) × U(1). Такие силы могут появляться довольно естественным образом в теориях великого объединения. В качестве одного из примеров предположим, что великая калибровочная группа разрушается не до прямого произведения SU(3) × SU(2) × U(1), а до SU(4) × SU(3) × SU(2) × U(1). Поскольку группа SU(4) больше группы SU(3), ее константа связи растет с уменьшением энергии быстрее, чем КХД-константа. Поэтому SU(4) — сила становится большой при намного более высоких энергиях, чем несколько сотен МэВ, когда сильными становятся взаимодействия в КХД. Обычные кварки и лептоны были бы нейтральными относительно SU(4). Они не чувствовали бы этой силы. Но другие фермионы могли бы нести квантовые числа SU(4) и поэтому обладали бы большими массами. Можно даже представить себе последовательность все возрастающих подгрупп великой калибровочной группы, которая заполнила бы огромную энергетическую область вплоть до 10>15 или 10>19 ГэВ массами частиц, рождающихся при таких последовательно усиливающихся взаимодействиях.

Если существуют элементарные скаляры, вакуумные ожидания которых ответственны за массы обычных кварков и лептонов, то эти массы в членах порядка α будут чувствовать радиационные поправки, обусловленные сверхтяжелыми векторными бозонами великой калибровочной группы. Возможно, что объяснить значения величин, подобных m/m, без полной теории великого объединения не удастся. С другой стороны, если таких элементарных скаляров нет, то почти все детали теории великого объединения оказываются забытыми в эффективной теории поля, описывающей физику при обычных энергиях. Тогда может оказаться возможным вычисление масс кварков и лептонов просто через свойства процессов при доступных энергиях. К сожалению, до сих пор никому не удалось показать, как можно получить таким способом что-либо напоминающее наблюдаемую картину распределения масс [60].

Отставив в сторону все эти неопределенности, предположим, что существует истинно фундаментальная теория, характеризуемая шкалой энергий порядка от 10>16 до 10>19 ГэВ, при которой сильные, электрослабые и гравитационные взаимодействия объединяются. Возможно, это будет обычная перенормируемая квантовая теория поля, но в настоящий момент, если мы учитываем гравитацию, не ясно, как ее построить. Однако если она перенормируемая, то чем же тогда задается бесконечный набор констант связи, которые необходимы, чтобы поглотить все ультрафиолетовые расходимости такой теории? Как я считаю, ответ заключается в том, что квантовая теория поля, которая родилась около пятидесяти лет назад в результате объединения квантовой механики с теорией относительности, оказалась прекрасным, но не очень здоровым ребенком. Как указывали много лет назад Ландау и Челлен, квантовая теория поля при сверхвысоких энергиях подвержена болезням всех сортов — тахионы, духи и т. п. — и нужны специальные лекарства для того, чтобы она выжила. Один из способов избежать возможных болезней квантовой теории поля состоит в том, чтобы сделать ее перенормируемой и асимптотически свободной. Однако имеются и другие способы. Например, даже бесконечный набор констант связи может стремиться к некой фиксированной, отличной от нуля точке по мере роста к бесконечности энергии, при которой они измеряются. Но требование наличия такого характерного поведения обычно накладывает столь много ограничений на эти константы, что в результате остается только конечное число свободных параметров [61] — в точности как для теорий, перенормируемых в обычном смысле слова. Таким образом, я думаю, что тем или иным способом квантовая теория поля окажется упрямо ограничивающей возможные подходы, так что она позволит описать лишь небольшое число возможных миров, среди которых, как мы надеемся, находится и наш мир.


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Объясняя мир. Истоки современной науки

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.