Первые три минуты - [68]
(потенциальная энергия тела единичной массы на поверхности массивного тела массы М приравнена кинетической энергии тела единичной массы, скорость которого равна скорости света).
Гравитационный радиус R>g = 2GM/c>2 пропорционален массе тела М: например, для Солнца он равен 2,94 км, а для Земли 0,88 см. Подобный объект и называется черной дырой.
Из сказанного выше ясно, что внешний наблюдатель не может получить от черной дыры никакого сигнала, она как бы исчезает из пространства. Это не означает, что невозможно определить наличие черной дыры в каком-то месте пространства. Межзвездный газ, окружающий черную дыру, может втягиваться в нее силами тяготения; при этом газ, падая на дыру, ускоряется, разогревается и начинает излучать. Сильное излучение можно ожидать в том случае, если черная дыра образует двойную систему с обычной звездой. В таком случае обычная звезда поставляет тот газ, который попадает затем в поле тяготения черной дыры.
В настоящее время во всех деталях изучены аналогичные системы, состоящие из нейтронной звезды и обычной звезды. Такие системы являются источниками рентгеновского излучения. Однако в одном случае есть основания считать, что мы имеем дело именно с черной дырой, а не с нейтронной звездой. Речь идет о рентгеновском источнике в созвездии Лебедя («Лебедь Х- 1»). Анализ движения обычной звезды, находящейся рядом с рентгеновским источником, приводит к выводу, что масса рентгеновского источника около 10 солнечных масс. Нейтронная звезда не может быть такой тяжелой. Есть и другие аргументы в пользу того, что в источнике Лебедь Х-1 находится тяжелая черная дыра.
При этом предполагается, что весьма массивная черная дыра образовалась в ходе эволюции и сжатия из обычной звезды с массой около 30 солнечных масс или больше. Такие звезды (с массами до 100 масс Солнца) в небольшом числе наблюдаются в нашей Галактике. Широко распространено предположение, что в ядрах галактик и в особо ярких источниках излучения — квазарах — также находятся гигантские черные дыры. Падение вещества в гравитационном поле этих черных дыр является источником энергии. Такие черные дыры также возникли сперва из звезд, а затем увеличили свою массу захватом окружающего вещества.
Вернемся теперь к вопросу о первичных черных дырах. Такие первичные черные дыры до сих пор не наблюдались. Предположительно, первичная черная дыра образуется в тот момент, когда размер возмущенной области порядка произведения скорости света на время, прошедшее с начала расширения. Она образуется в том случае, если локальная масса в несколько раз больше средней. Ожидаемая масса черной дыры в примере, приведенном выше, равна ρ(ct)>3 = 5 × 10>11(3 × 10>7)>3 = 10>33 г, т. е. порядка массы Солнца. Но масса первичной черной дыры может быть и гораздо меньше, если размер возмущения меньше и первичная черная дыра образуется раньше. В этом и заключается главное отличие предполагаемых первичных черных дыр от «вторичных», звездных: звезда малой массы вообще не превращается в черную дыру, она в конце эволюции превращается в карлик или пульсар. Масса звездной черной дыры не может быть меньше (4–6) × 10>33 г (меньше двух-трех масс Солнца). Масса первичной черной дыры может быть любой малой величиной, например 10>20 г, или 10>6 г (1 тонна), или 1 г, если образование черной дыры происходит соответственно в момент 10>-18 с, или 10>-32 с, или 10>-38 с от начала расширения. Чем раньше образуется первичная черная дыра, тем больше плотность вещества.
В действительности, как уже сказано, ни одна первичная черная дыра не наблюдена. Значит, количество их во всяком случае невелико. Отсюда можно сделать вывод, что нет сильных возмущений, способных вызвать образование черных дыр, притом даже в малых масштабах.
В 1974 году английский теоретик Хокинг доказал, что черные дыры «испаряются», испуская частицы, энергия которых обратно пропорциональна массе черной дыры. Время полного испарения равно приблизительно 10>-28 × М>3с, где М — начальная масса черной дыры в граммах. Таким образом, к настоящему времени могли бы уцелеть только сравнительно тяжелые черные дыры с массой больше 10>15 г (так как время жизни Вселенной ~ 10>17 с). Соображения Я.Б. Зельдовича и И.Д. Новикова о том, что первичные черные дыры практически отсутствуют, остаются справедливыми только для этих тяжелых черных дыр. Однако черные дыры с массой в интервале значений 10>9 < М < 10>15 г, испаряясь, давали бы рентгеновские кванты и меняли бы спектр микроволнового излучения. Наблюдения показывают, что и такие черные дыры не рождались. Таким образом, могли рождаться, а затем испаряться лишь черные дыры с массой меньше 10>9 г. Их гравитационный радиус меньше 10>-19 см, они могли бы рождаться лишь при плотности вещества больше 10>67 г/см>3.
Таким образом, удается сделать вывод, что даже на очень ранних стадиях Вселенная была более или менее однородна, не было сильных (по амплитуде) коротковолновых возмущений, которые могли бы рождать первичные черные дыры. Косвенно получается дополнительное подтверждение предположения о малости безразмерных возмущений во всех масштабах. Удается заглянуть в прошлое Вселенной еще глубже, чем это было возможно несколько лет назад.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана на основе вопросов, наиболее часто задаваемых автору читателями на публичных встречах и при индивидуальных беседах по теме «Пилотируемые космические полеты».Читателей интересовало: «Почему погиб Юрий Гагарин, а его дочери приватизировали его имя как товарный знак?», «Почему наши женщины не летают в космос так же часто, как американки?», «Правда ли, что Терешкова и Николаев поженились по приказу Хрущева?», «В чем разница в подготовке к полету астронавтов и космонавтов?». Всего 25 вопросов и ответов в популярном изложении.При этом, ответы, предлагаемые автором, дают возможность читателям продолжить поиск и изучение других вариантов ответов, так как автор не претендует на исчерпывающую и окончательную точку зрения.Более того.
Книга повествует об истории представления человечества об устройстве Солнечной системы и Вселенной на протяжении тысяч лет. Вы узнаете о великих ученых древности и современных научных открытиях, о самых неожиданных гипотезах и о том, какие перспективы открываются нам в будущем с развитием научно-технического прогресса.
«Записки наблюдателя туманных объектов» — совокупность статеек, которая в конце 2009 года выросла в отдельную книгу. Насколько она удалась — судить вам. К работе над ними я приступил после 15 лет наблюдения звездного неба в пятнадцатисантиметровый телескоп. В «Записках» я не пытался описать как можно больше сокровищ звездного неба, а просто хотел поделиться своими впечатлениями и радостью от их созерцания. На данной странице можно найти и отдельные статьи в том виде, в каком они были опубликованы в журнале «Небосвод».
Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна.