Первые три минуты - [65]
Позже, в 1974 году, С. Хоукинг и вслед за ним Я.Б. Зельдович отметили возможность появления избытка вещества при испарении черных дыр.
Новая ситуация возникла уже после выхода в свет предлагаемой книги Вайнберга. Сейчас развивается новая теория элементарных частиц, объединяющая теорию электромагнетизма, теорию слабого взаимодействия (в частности, процессов испускания электронов и нейтрино при распаде нейтрона) и теорию сильного взаимодействия (ядерных сил и кварков). В этой теории естественным образом получается, что протон должен распадаться с временем жизни около 10>32 лет. Это предсказание не противоречит существующим опытам.
В настоящее время (конец 1980 года) начинается необычайно трудный, но и важнейший «эксперимент века» — поиски распада протона, предсказанного теорией. Применительно к космологии и, в частности, к теории горячей Вселенной возможно, что теория объяснят соотношение между количеством вещества (протонов) и фотонов, т. е. значение числа В/γ = 10>-8 ÷ 10>-9 (отношение числа протонов к числу фотонов в единице объема), которое в настоящее время известно только из наблюдений. Единственным предположением при этом будет однородное и изотропное расширение Вселенной «по Фридману», начиная с сингулярного состояния. В развитии теории активное участие принимает Вайнберг.
Конкретно наиболее вероятным считается следующий механизм распада протона, связанный с предположением о существовании очень тяжелых дробнозаряженных скалярных (т. е. со спином нуль) Х-частиц. Их масса в 10>14 раз больше массы протона, а заряд равен +4/Зе или —4/Зе, где е — элементарный заряд (заряд протона). Эти частицы могут распадаться по двум каналам каждая:
Здесь q — кварки; q¯ — антикварки; l — лептоны (заряженные!); l¯ — антилептоны. В первом канале для X>+ фигурируют два кварка с зарядом +2/Зе каждый, во втором канале античастица кварка, имеющего заряд -1/Зе. Следовательно, заряд q¯ во втором канале равен +1/Зе, а заряд l¯ равен +е. Таким образом, электрический заряд сохраняется точно. Однако барионный заряд, получающийся в двух каналах, различен. Напомним, что барион состоит из трех кварков и барионный заряд кварка равен 1/3; барионный заряд протона равен 1 по определению.
При высокой температуре (выше пороговой температуры для рождения Х-частиц) частицы X находятся в равновесии. Однако при расширении и охлаждении распад Х-частиц отстает и на определенной стадии X>+ и Х>- распадаются в неравновесных условиях. При этом из-за асимметрии частиц и античастиц образуется несколько больше кварков по сравнению с количеством антикварков. При дальнейшем охлаждении кварки и антикварки соединяются в барионы, антибарионы и мезоны, и возникает избыток барионов.
С другой стороны, распад протонов в настоящее время происходит через промежуточное образование частицы X:
Первый шаг процесса есть обращение того процесса (X → 2q), который написан выше. Так как X — очень тяжелая частица, то образоваться она может лишь на краткое мгновение (как говорят физики — «виртуально»), наблюдать можно лишь конечные продукты распада
Вероятность процесса мала именно потому, что велика масса X, образующая энергетический барьер на пути реакции. В ближайшие 20–30 лет прямое наблюдение Х-частицы исключено, однако мы надеемся, что распад протона будет наблюден значительно раньше.
ДОПОЛНЕНИЕ 7. О КОНЦЕНТРАЦИИ И ПЛОТНОСТИ
НЕЙТРИНО ВО ВСЕЛЕННОЙ
При высокой температуре, выше 10>10 К, нейтрино находятся в термодинамическом равновесии с электронами, позитронами и фотонами. Равновесная концентрация нейтрино убывает с понижением температуры пропорционально кубу температуры. Этот закон убывания такой же, как и у фотонов, так как нейтрино либо вовсе не имеют массы покоя, как фотоны, либо масса их мала по сравнению с энергией при высокой температуре. Поэтому соотношение между числом нейтрино и фотонов в этот период не зависит от силы взаимодействия и, таким образом, неверно, что нейтрино сохраняются вследствие того, что они слабо взаимодействуют и сечение их аннигиляции мало. Если бы нейтрино взаимодействовали сильнее (что в действительности имеет место при температуре выше 10>10 К), то аннигиляция нейтрино и антинейтрино с превращением их, например, в фотоны происходила бы чаще. Однако одновременно усилился бы и обратный процесс превращения фотонов в пары нейтрино и антинейтрино. Концентрация нейтрино в термодинамическом равновесии, приблизительно равная концентрации фотонов, при этом не изменилась бы. Имея в виду, что позже, после аннигиляции электронов и позитронов, температура нейтрино на самом деле будет даже несколько ниже температуры излучения, усиление взаимодействия привело бы даже к некоторому увеличению концентрации нейтрино за счет уменьшения концентрации фотонов. Сказанное выше относится к нейтрино, относительно которых предполагается, что масса покоя равна нулю, скорость равна скорости света и энергия равна импульсу, умноженному на скорость света. Термодинамические свойства таких безмассовых нейтрино мало отличаются от свойств фотонов.
Современная теория не исключает возможного существования тяжелых нейтрино с отличной от нуля массой покоя. Надо сказать, что из лабораторных опытов определить массы нейтрино удается с трудом и неточно. До недавнего времени, до 1980 года, известны были лишь верхние пределы массы нейтрино различного типа. Лабораторные опыты по распаду трития давали для массы покоя электронного нейтрино верхний предел
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.