Первые три минуты - [29]
Эти неопределенности не помешают нашему рассказу об истории ранней Вселенной. Для нас важно, что в любой момент времени задолго до того, как содержимое Вселенной стало прозрачным, ее можно рассматривать как состоящую из излучения лишь с небольшой примесью вещества. Грандиозная плотность энергии излучения в ранней Вселенной постепенно уменьшилась благодаря смещению длин волн фотонов в красную сторону в процессе ее расширения, дав возможность примеси ядерных частиц и электронов превратиться в звезды, скалы и живые существа теперешней Вселенной.
IV. РЕЦЕПТ ПРИГОТОВЛЕНИЯ ГОРЯЧЕЙ ВСЕЛЕННОЙ
Наблюдения, обсуждавшиеся в двух предыдущих главах, показали, что Вселенная расширяется и что она заполнена универсальным фоном излучения, который имеет сейчас температуру З К. Это излучение представляется пережитком того времени, когда Вселенная была непрозрачной и примерно в 1 000 раз меньше и горячее, чем в настоящее время. (Как и всегда, когда мы говорим, что Вселенная была в 1 000 раз меньше, чем сейчас, мы просто имеем в виду, что расстояние между любой данной парой типичных галактик было тогда в 1 000 раз меньше теперешнего.) В качестве заключительного этапа подготовки к нашему расчету первых трех минут мы должны заглянуть назад в еще более ранние моменты времени, когда Вселенная была еще меньше и горячее, используя для изучения господствовавших тогда физических условий не оптические или радиотелескопы, а теоретические методы исследования.
В конце главы III мы отмечали, что когда Вселенная была в 1 000 раз меньше, чем в настоящее время, и содержавшееся в ней вещество было на грани того, чтобы стать прозрачным для излучения, Вселенная перешла от эры преобладания излучения к теперешней эре преобладания вещества. Во время эры преобладания излучения было не только то же самое огромное количество фотонов на каждую ядерную частицу, что и сейчас, но энергия отдельных фотонов была достаточно велика, так что большая часть энергии Вселенной была в форме излучения, а не частиц. (Напомним, что фотоны — это безмассовые частицы, или кванты, из которых, согласно квантовой теории, состоит свет.) Следовательно, с достаточно хорошим приближением Вселенную в течение этой эры можно рассматривать так, будто она заполнена только одним излучением и не содержит вовсе никакого вещества.
Этот вывод надо сопроводить одним важным уточнением. Мы увидим в этой главе, что эра чистого излучения началась на самом деле только в конце первых нескольких минут, когда температура упала ниже нескольких миллиардов градусов Кельвина. До этого момента вещество было важно, но вещество, сильно отличавшееся от того, из которого состоит наша нынешняя Вселенная. Однако прежде, чем мы заглянем столь далеко назад, кратко рассмотрим собственно эру излучения, от конца первых нескольких минут до момента на несколько сот тысяч лет позднее, когда вещество стало вновь более важным, чем излучение.
Все, что нам нужно для того, чтобы проследить историю Вселенной в течение этой эры, это знать, насколько все было горячим в любой данный момент времени. Иными словами, как температура связана с размером Вселенной в процессе ее расширения?
Было бы легко ответить на этот вопрос, если бы излучение можно было рассматривать расширяющимся свободно. Длина волны каждого фотона просто растягивалась бы (благодаря красному смещению) пропорционально размеру Вселенной в процессе ее расширения. Кроме того, мы видели в предыдущей главе, что средняя длина волны излучения черного тела обратно пропорциональна температуре. Следовательно, температура должна была уменьшаться обратно пропорционально размеру Вселенной, так же, как это происходит сейчас.
К счастью для теоретика-космолога, это же простое соотношение выполняется даже тогда, когда мы принимаем во внимание, что излучение в действительности не расширялось свободно, — быстрые столкновения фотонов с относительно небольшим числом электронов и ядерных частиц делали содержимое Вселенной непрозрачным в течение эры преобладания излучения. Пока фотон был в свободном полете между столкновениями, его длина волны должна была увеличиваться пропорционально размеру Вселенной, а на каждую частицу приходилось так много фотонов, что столкновения просто вынуждали температуру вещества следовать температуре излучения, но не наоборот. Таким образом, когда Вселенная была, например, в десять тысяч раз меньше, чем сейчас, температура должна была быть пропорционально выше теперешней, т. е. около 30 000 К. Вот все, что можно сказать об эре излучения.
В конце концов, по мере того, как мы все дальше и дальше заглядываем в глубь истории Вселенной, мы приходим к моменту времени, когда температура была столь высока, что столкновения фотонов друг с другом могли порождать частицы вещества из чистой энергии излучения. Мы собираемся показать, что образованные таким образом частицы были так же важны для определения скорости различных ядерных реакций и скорости расширения Вселенной в первые несколько минут, как и само излучение. Поэтому, чтобы проследить за ходом событий в действительно ранние моменты времени, нам потребуется знать, сколь горяча должна быть Вселенная, чтобы из энергии излучения образовалось большое количество материальных частиц, и сколько частиц так образовалось.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
Книга написана на основе вопросов, наиболее часто задаваемых автору читателями на публичных встречах и при индивидуальных беседах по теме «Пилотируемые космические полеты».Читателей интересовало: «Почему погиб Юрий Гагарин, а его дочери приватизировали его имя как товарный знак?», «Почему наши женщины не летают в космос так же часто, как американки?», «Правда ли, что Терешкова и Николаев поженились по приказу Хрущева?», «В чем разница в подготовке к полету астронавтов и космонавтов?». Всего 25 вопросов и ответов в популярном изложении.При этом, ответы, предлагаемые автором, дают возможность читателям продолжить поиск и изучение других вариантов ответов, так как автор не претендует на исчерпывающую и окончательную точку зрения.Более того.
Книга повествует об истории представления человечества об устройстве Солнечной системы и Вселенной на протяжении тысяч лет. Вы узнаете о великих ученых древности и современных научных открытиях, о самых неожиданных гипотезах и о том, какие перспективы открываются нам в будущем с развитием научно-технического прогресса.
«Записки наблюдателя туманных объектов» — совокупность статеек, которая в конце 2009 года выросла в отдельную книгу. Насколько она удалась — судить вам. К работе над ними я приступил после 15 лет наблюдения звездного неба в пятнадцатисантиметровый телескоп. В «Записках» я не пытался описать как можно больше сокровищ звездного неба, а просто хотел поделиться своими впечатлениями и радостью от их созерцания. На данной странице можно найти и отдельные статьи в том виде, в каком они были опубликованы в журнале «Небосвод».
Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна.