Первые три минуты - [25]
Что случилось с фотонами после этого? Отдельные фотоны не рождались и не уничтожались, поэтому среднее расстояние между ними просто увеличивалось пропорционально размеру Вселенной, т. е. пропорционально среднему расстоянию между типичными галактиками. Но мы видели в предыдущей главе, что эффект космологического красного смещения заключается в «растяжении» длины волны любого луча света в процессе расширения Вселенной; следовательно, длины волн всех отдельных фотонов также просто увеличивались пропорционально размеру Вселенной. Поэтому расстояние между фотонами оставалось равным средней длине волны, в точности как в излучении черного тела. И действительно, выразив эти аргументы количественно, можно показать, что излучение, заполняющее Вселенную, будет продолжать в процессе ее расширения описываться в точности планковской формулой для черного тела, даже несмотря на то, что оно уже больше не находится в тепловом равновесии с веществом. (См. математическое дополнение 4) Единственный эффект расширения будет заключаться в увеличении средней длины волны фотонов пропорционально размеру Вселенной. Температура излучения черного тела обратно пропорциональна средней длине волны, поэтому она будет падать при расширении Вселенной обратно пропорционально ее размеру.
В частности, Пензиас и Вилсон нашли, что интенсивность микроволнового фона, который был ими обнаружен, соответствует температуре примерно З К. Это как раз то, что следует ожидать, если Вселенная расширилась в 1000 раз с тех пор, когда температура была достаточно высока (3 000 К) для того, чтобы держать вещество и излучение в тепловом равновесии. Если подобная интерпретация правильна, то трехградусный радиофон представляет в настоящее время самый древний сигнал из всех, принятых астрономами, испущенный задолго до испускания света самыми далекими из видимых нами галактик.
Но Пензиас и Вилсон измерили интенсивность космического радиофона на единственной длине волны 7,35 см. Сразу же стало необходимо как можно быстрее определить, описывается ли распределение энергии излучения по длинам волн формулой Планка для черного тела, как того следует ожидать, если это действительно смещенное в красную сторону древнее излучение, оставшееся от той эпохи, когда вещество и излучение находились в состоянии теплового равновесия. Если это так, то эквивалентная температура, вычисленная подстановкой наблюдаемой интенсивности радиошума в планковскую формулу, должна иметь одно и то же значение на всех длинах волн, такое же, как и на волне длиной 7,35 см, изученной Пензиасом и Вилсоном.
Мы видели, что к моменту открытия Пензиаса и Вилсона в Нью-Джерси уже готовилась другая попытка обнаружить космический фон микроволнового излучения. Вскоре после появления первой пары работ двух групп ученых из лабораторий фирмы Белл и Принстона Ролл и Уилкинсон объявили свой результат: эквивалентная температура фона излучения на длине волны 3,2 см составляла от 2,5 до 3,5 К. Это значило, что в пределах экспериментальных погрешностей интенсивность космического фона на длине волны 3,2 см была больше, чем на длине волны 7,35 см как раз в то количество раз, которое следовало ожидать, если излучение описывается формулой Планка!
Начиная с 1965 года интенсивность древнего микроволнового излучения была измерена радиоастрономами более чем на дюжине длин волн в интервале от 73,5 вплоть до 0,33 см. Каждое из этих измерений согласуется с планковским распределением энергии в зависимости от длины волны с температурой между 2,7 и З К.
Однако, прежде чем мы окончательно придем к выводу, что это действительно излучение черного тела, мы должны напомнить, что средняя длина волны, на которой планковское распределение достигает максимума, равна 0,29 см, деленным на температуру в градусах Кельвина, что для температуры 3 К оказывается чуть меньше 0,1 см. Таким образом, все упомянутые микроволновые измерения относились к длинноволновой стороне по отношению к максимуму планковского распределения. Но мы видели, что рост плотности энергии с уменьшением длины волны в этой части спектра происходит просто из-за трудности заключения больших длин волн в малые объемы, и этот рост следует ожидать для разнообразных полей излучения, включая и излучение, которое не образовано в условиях теплового равновесия. (Радиоастрономы называют эту часть спектра областью Рэлея-Джинса, так как она была впервые проанализирована лордом Рэлеем и сэром Джеймсом Джинсом.) Чтобы убедиться в том, что мы действительно видим излучение черного тела, необходимо пройти через максимум планковского распределения в область коротких волн и проверить, что плотность энергии на самом деле падает с уменьшением длины волны, как ожидается на основе квантовой теории[26]. При длинах волн короче 0,1 см мы, в действительности, находимся вне сферы деятельности радио- или микроволновой астрономии и попадаем в новую область инфракрасной астрономии.
К сожалению, атмосфера нашей планеты, которая почти прозрачна для длин волн больше 0,3 см, становится все менее прозрачной для более коротких длин волн. Похоже на то, что никакая наземная радиообсерватория, даже расположенная на горной высоте, не сможет измерить космический фон излучения на длинах волн много меньших 0,3 см.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
Книга написана на основе вопросов, наиболее часто задаваемых автору читателями на публичных встречах и при индивидуальных беседах по теме «Пилотируемые космические полеты».Читателей интересовало: «Почему погиб Юрий Гагарин, а его дочери приватизировали его имя как товарный знак?», «Почему наши женщины не летают в космос так же часто, как американки?», «Правда ли, что Терешкова и Николаев поженились по приказу Хрущева?», «В чем разница в подготовке к полету астронавтов и космонавтов?». Всего 25 вопросов и ответов в популярном изложении.При этом, ответы, предлагаемые автором, дают возможность читателям продолжить поиск и изучение других вариантов ответов, так как автор не претендует на исчерпывающую и окончательную точку зрения.Более того.
Книга повествует об истории представления человечества об устройстве Солнечной системы и Вселенной на протяжении тысяч лет. Вы узнаете о великих ученых древности и современных научных открытиях, о самых неожиданных гипотезах и о том, какие перспективы открываются нам в будущем с развитием научно-технического прогресса.
«Записки наблюдателя туманных объектов» — совокупность статеек, которая в конце 2009 года выросла в отдельную книгу. Насколько она удалась — судить вам. К работе над ними я приступил после 15 лет наблюдения звездного неба в пятнадцатисантиметровый телескоп. В «Записках» я не пытался описать как можно больше сокровищ звездного неба, а просто хотел поделиться своими впечатлениями и радостью от их созерцания. На данной странице можно найти и отдельные статьи в том виде, в каком они были опубликованы в журнале «Небосвод».
Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна.