Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - [40]

Шрифт
Интервал

В стандартной библиотеке С++ такие одноразовые события моделируются с помощью будущего результата. Если поток должен ждать некоего одноразового события, то он каким-то образом получает представляющий его объект-будущее. Затем поток может периодически в течение очень короткого времени ожидать этот объект-будущее, проверяя, произошло ли событие (посмотреть на табло вылетов), а между проверками заниматься другим делом (вкушать в кафе аэропортовскую пищу по несуразным ценам). Можно поступить и иначе — выполнять другую работу до тех пор, пока не наступит момент, когда без наступления ожидаемого события двигаться дальше невозможно, и вот тогда ждать готовности будущего результата. С будущим результатом могут быть ассоциированы какие-то данные (например, номер выхода в объявлении на посадку), но это необязательно. После того как событие произошло (то есть будущий результат готов), сбросить объект-будущее в исходное состояние уже невозможно.

В стандартной библиотеке С++ есть две разновидности будущих результатов, реализованные в форме двух шаблонов классов, которые объявлены в заголовке >: уникальные будущие результаты (>std::future<>) и разделяемые будущие результаты (>std::shared_future<>). Эти классы устроены по образцу >std::unique_ptr и >std::shared_ptr. На одно событие может ссылаться только один экземпляр >std::future, но несколько экземпляров >std::shared_future. В последнем случае все экземпляры оказываются готовы одновременно и могут обращаться к ассоциированным с событием данным. Именно из-за ассоциированных данных будущие результаты представлены шаблонами, а не обычными классами; точно так же шаблоны >std::unique_ptr и >std::shared_ptr параметризованы типом ассоциированных данных. Если ассоциированных данных нет, то следует использовать специализации шаблонов >std::future и >std::shared_future. Хотя будущие результаты используются как механизм межпоточной коммуникации, сами по себе они не обеспечивают синхронизацию доступа. Если несколько потоков обращаются к единственному объекту-будущему, то они должны защитить доступ с помощью мьютекса или какого-либо другого механизма синхронизации, как описано в главе 3. Однако, как будет показано в разделе 4.2.5, каждый из нескольких потоков может работать с собственной копией >std::shared_future<> безо всякой синхронизации, даже если все они ссылаются на один и тот же асинхронно получаемый результат.

Самое простое одноразовое событие — это результат вычисления, выполненного в фоновом режиме. В главе 2 мы видели, что класс >std::thread не предоставляет средств для возврата вычисленного значения, и я обещал вернуться к этому вопросу в главе 4. Исполняю обещание.

4.2.1. Возврат значения из фоновой задачи

Допустим, вы начали какое-то длительное вычисление, которое в конечном итоге должно дать полезный результат, но пока без него можно обойтись. Быть может, вы нашли способ получить ответ на «Главный возрос жизни, Вселенной и всего на свете» из книги Дугласа Адамса[7]. Для вычисления можно запустить новый поток, но придётся самостоятельно позаботиться о передаче в основную программу результата, потому что в классе >std::thread такой механизм не предусмотрен. Тут-то и приходит на помощь шаблон функции >std::async (также объявленный в заголовке >).

Функция s>td::async позволяет запустить асинхронную задачу, результат которой прямо сейчас не нужен. Но вместо объекта >std::thread она возвращает объект >std::future, который будет содержать возвращенное значение, когда оно станет доступно. Когда программе понадобится значение, она вызовет функцию-член >get() объекта-будущего, и тогда поток будет приостановлен до готовности будущего результата, после чего вернет значение. В листинге ниже оказан простой пример.


Листинг 4.6. Использование >std::future для получения результата асинхронной задачи

>#include

>#include


>int find_the_answer_to_ltuae();

>void do_other_stuff();


>int main() {

> std::future the_answer =

>  std::async(find_the_answer_to_ltuae);

> do_other_stuff();

> std::cout << "Ответ равен " << the_answer.get() << std::endl;

>}

Шаблон >std::async позволяет передать функции дополнительные параметры, точно так же, как >std::thread. Если первым аргументом является указатель на функцию-член, то второй аргумент должен содержать объект, от имени которого эта функция-член вызывается (сам объект, указатель на него или обертывающий его >std::ref), а все последующие аргументы передаются без изменения функции-члену. В противном случае второй и последующие аргументы передаются функции или допускающему вызов объекту, заданному в первом аргументе. Как и в >std::thread, если аргументы представляют собой r-значения, то создаются их копии посредством перемещения оригинала. Это позволяет использовать в качестве объекта-функции и аргументов типы, допускающие только перемещение. Пример см. в листинге ниже.


Листинг 4.7. Передача аргументов функции, заданной в >std::async

>#include

>#include


>struct X {

> void foo(int, std::string const&);

> std::string bar(std::string const&);

>};

>                                                │


Еще от автора Энтони Д Уильямс
Викиномика. Как массовое сотрудничество изменяет всё

Это знаменитый бестселлер, который научит вас использовать власть массового сотрудничества и покажет, как применять викиномику в вашем бизнесе. Переведенная более чем на двадцать языков и неоднократно номинированная на звание лучшей бизнес-книги, "Викиномика" стала обязательным чтением для деловых людей во всем мире. Она разъясняет, как массовое сотрудничество происходит не только на сайтах Wikipedia и YouTube, но и в традиционных компаниях, использующих технологии для того, чтобы вдохнуть новую жизнь в свои предприятия.Дон Тапскотт и Энтони Уильямс раскрывают принципы викиномики и рассказывают потрясающие истории о том, как массы людей (как за деньги, так и добровольно) создают новости, изучают геном человека, создают ремиксы любимой музыки, находят лекарства от болезней, редактируют школьные учебники, изобретают новую косметику, пишут программное обеспечение и даже строят мотоциклы.Знания, ресурсы и вычислительные способности миллиардов людей самоорганизуются и превращаются в новую значительную коллективную силу, действующую согласованно и управляемую с помощью блогов, вики, чатов, сетей равноправных партнеров и личные трансляции.


Рекомендуем почитать
Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Геймдизайн. Рецепты успеха лучших компьютерных игр от Super Mario и Doom до Assassin’s Creed и дальше

Что такое ГЕЙМДИЗАЙН? Это не код, графика или звук. Это не создание персонажей или раскрашивание игрового поля. Геймдизайн – это симулятор мечты, набор правил, благодаря которым игра оживает. Как создать игру, которую полюбят, от которой не смогут оторваться? Знаменитый геймдизайнер Тайнан Сильвестр на примере кейсов из самых популярных игр рассказывает как объединить эмоции и впечатления, игровую механику и мотивацию игроков. Познакомитесь с принципами дизайна, которыми пользуются ведущие студии мира! Создайте игровую механику, вызывающую эмоции и обеспечивающую разнообразие.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


MFC и OpenGL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Симуляция частичной специализации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.