Парадоксы ракеты. Еще о парадоксах ракеты - [5]
Все сказанное совершенно правильно, но лишь в случае выключенного двигателя. Правильны также и все положения статьи. Pакета, брошенная предварительно вниз, взлетит на 12 километров выше, чем ракета, запущенная вертикально вверх. Кажущееся противоречие с законами физики существует только для тех, кто не учитывает особенностей ракетного двигателя. Вспомним эти особенности.
Как известно, движение ракеты происходит вследствие того, что некоторая масса газов (продуктов сгорания топлива) с большой скоростью вылетает из сопла ракетного снаряда. Но ракета и газы составляют общую систему из двух тел. В этом случае, согласно закону Ньютона, ракета получает импульс (толчок) в противоположную истечению газов сторону. Она начнет удаляться от общего для обоих тел центра тяжести. Спустя одну секунду скорость движения ракеты будет во столько раз меньше скорости вылетевших газов, во сколько раз ее масса больше их массы. Так объясняет механика полет ракеты. Теперь рассмотрим энергетическую сторону движения ракеты. Горючее, находящееся на борту ракеты, хранит в себе некоторый запас термохимической энергии. При сгорании топлива эта энергия освобождается и сообщает ракете поступательное движение. Одинаковые количества определенного топлива всегда имеют и одинаковые запасы термохимической энергии. Поэтому многие товарищи, приславшие свои письма в редакцию, рассуждали так: раз запасы энергии в обеих ракетах одинаковы и раз эта энергия целиком расходуется на движение снаряда, то мы ни в коем случае не можем получить никакого выигрыша ни в скорости, ни в потолке ракеты. Вот тут-то и скрывается источник всех недоразумений. На самом деле далеко не вся энергия топлива расходуется на движение ракеты, большое количество ее пропадает зря.
Для того чтобы ракета начала движение вперед, частицы газов должны вылетать из ее сопла назад. За счет чего же эти частицы приобретают свою скорость? За счет термохимической энергии топлива. Таким образом, эта энергия делится на две части. Одна часть ее идет на то, чтобы сообщить движение газам, а другая сообщает поступательное движение ракете. И чем больше энергии пойдет на движение ракеты, тем больше будет коэффициент полезного действия ракетногo двигателя. Наоборот, чем больше энергии будет затрачено на движение газов, тем меньше будет полезная работа двигателя. Нетрудно догадаться, что наибольший коэффициент полезного действия мы получим в том случае, если вылетающие газы не будут иметь никакой скорости, то есть не будут уносить с собой никакой энергии.
Но возможно ли это? Здесь как будто явное противоречие. Ведь для быстрого движения ракеты надо, чтобы газы вылетали из ее сопла с большой скоростью, а для того, чтобы коэффициент полезного действия ее был возможно выше, нужно, чтобы эти газы имели наименьшую скорость. Однако противоречие здесь только кажущееся. На самом деле такое условие можно легко соблюсти. Пусть скорость истечения газов равна 700 м/сек, как это было принято в статье. Если ракетный двигатель начинает работу в тот момент, когда снаряд стоит неподвижно, то вылетающие из сопла газы уносят с собой наибольшее количество энергии. Наблюдатель, стоящий вблизи ракеты, увидит, как эти газы будут проноситься мимо него с колоссальной скоростью. И пока ракета не достигнет большой скорости, ее коэфициент полезного действия будет очень мал.
Теперь представим себе, что двигатели начали свою работу в тот момент, когда скорость ракеты достигла 700 м/сек. Таким образом, вся система ракета — газ несется вперед с этой скоростью. Газы удаляются от ракеты назад со скоростью 700 м/сек. Но вместе со всей системой они летят вперед с той же скоростью. Фактически газы останутся неподвижными, а ракета будет сначала отлетать от них вперед со скоростью 700 м/сек. А раз по отношению к окружающему пространству частицы газа станут неподвижными, то они не будут уносить с собой никакой энергии. А это, в свою очередь, означает, что вся термохимическая энергия топлива почти нацело превратится в кинетическую энергию движения ракеты. И пока скорость ракеты не достигнет 1000–1100 м/сек, ее коэффициент полезного действия будет близок к единице, то есть максимально высок.
Стало быть, на движение газов ушло относительно мало энергии. Таким образом, хотя термохимической энергии топлива и не прибавилось, но распределилась она по-разному. В первом случае бо́льшая ее часть ушла на то, чтобы сообщить газам высокую скорость, а во втором случае — на движение ракеты.
Возвратимся теперь к нашей статье. Газы, вылетевшие из сопла ракеты, запущенной вертикально, унесут с собо бо́льшую часть термохимической энергии топлива. Оставшейся энергии хватит лишь на то, чтобы сообщить ракете скорость, при которой она сможет взлететь всего лишь на 9 километров. Если же мы бросим снаряд в пропасть, мы создадим этим наиболее выгодные условия для работы ракетного двигателя: он начнет работать, когда снаряд уже достигнет большой скорости. Израсходованное же на нижнем уровне топливо отдает снаряду, как увидим ниже, часть своей первоначальной потенциальной энергии. Вследствие этого коэффициент полезного действия двигателя сильно повышается. В этом случае газы унесут меньше энергии. Остатка ее будет достаточно, чтобы поднять ракету на высоту 21 километра.
Репортаж о работе космонавтов на малой луне, или как мы сейчас говорим — орбитальной космической станции. Написан за пять лет до полета Первого искусственного спутника Земли…
Издано в журнаде «Юность», 1955 г., № 3.На цветной вкладке слева: «Мы не только ездили на нашем корабле-вездеходе, но я путешествовал пешком по Меркурию» (А. Штернфельд «Рейс на Меркурий», стр. 94). Худ. Н. Гришин.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам. Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв. Что мы знаем о Вселенной? Наша Вселенная велика.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.Книга рассчитана на широкий круг читателей.
Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы.