Парадоксы науки - [8]

Шрифт
Интервал

Это не поддающееся измерению отношение диагонали и стороны квадрата было представлено выражением V2 (корень квадратный). Оно имеет следующее происхождение.

Если квадрат разрезать по диагонали, получим два прямоугольных равнобедренных треугольника, где линия бывшей диагонали будет гипотенузой, а стороны квадрата — катетами. Согласно знаменитой теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, точнее, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Отсюда и величина отношения гипотенузы к катету (или диагонали к стороне квадрата), равная V2 (корень квадратный).

Позднее нашли, что также несоизмеримы отношения длины окружности к диаметру (оно выражается числом я), площади круга и квадрата, построенного на радиусе, и другие величины.

Кризис был преодолен введением новых чисел, которые не являются ни целыми, ни дробными. Они могут быть представлены в виде бесконечных непериодических дробей. К примеру, корень из 2 равен 1,41.., п = 3,14… и т. д. Людям, знавшим только рациональные числа, вновь введенные казались несуразными, противоестественными. Это отразилось и в их названии: «иррациональные», что значит «бессмысленные», лежащие по ту сторону разумного.

Дело в том, что если целые числа и дроби имели ясное физическое толкование, то для иррациональных чисел ею не находилось. Был только один способ придать им реальный смысл: сопоставить с ними длины определенных отрезков. Греки так и поступили. Они отказались от понимания иррациональных чисел в качестве именно чисел, а истолковали их как длины, то есть перевели на язык геометрии.

Здесь важно подчеркнуть, что введение новых чисел оказало сильнейшее влияние на последующее развитие математики.

Очередная катастрофа произошла несколько веков спустя и особенно терзала математику в XVII-XVIII столетиях. В этот раз дело касалось истолкования бесконечно малых величин. Мы видели, что бесконечность участвовала и в первом кризисе. Там она отразилась в способе представления иррациональных чисел. Она будет участвовать и в третьем кризисе. И вообще, полагают некоторые, если резюмировать сущность математики в немногих словах, то можно сказать, что она — наука о бесконечном. Так, крупнейший немецкий ученый XX века Д. Гильберт, имея в виду математику, писал:

«Ни одна проблема не волновала гак глубоко человеческую душу, как проблема бесконечного, ни одна идея не оказала сголь сильного и плодотворного влияния на разум, как идея бесконечного». Но вместе с тем, заключает он, «ни одно понятие не нуждается так в выяснении, как понятие бесконечного». Однако вернемся к кризисам.

Бесконечно малые — это переменные величины, стремящиеся к тлю, точнее, как было показано позже, стремящиеся к пределу, равному нулю. Кризис возник в силу расплывчатою понимания бесконечно малого.

В одних случаях оно приравнивалось к нулю и при вычислениях отбрасывалось, в других же — принималось как значение, отличное от нуля, о чем говорит и само название. Причина столь противоречивого подхода к бесконечно матым объясняется гем, что их рассматривали в качестве постоянных величин. В силу этого бесконечное понималось как нечто завершенное, имеющееся налицо, данное всеми своими элементами.

Выход из кризиса был найден созданием теории пределов, окончательно построенной в начале XIX века известным французским математиком О. Коши. Это парадоксальное состояние (полагать бесконечно малые нулями и в то же время неравными нулю) О. Коши разрешает введением качественно новых, неслыханных ранее величин. Он берет их из области возможного, а не действительного. Бесконечно малые — это величины, которые существуют лишь как постоянно изменяющиеся, стремящиеся к пределу, но никогда его не достигающие. То есть они всегда остаются в возможности, в потенции, так что не реализуется ни одна из указанных альтернатив. Величины не застывают в каких-либо одних конкретных значениях. Они постоянно изменяются, приближаясь к нулю, но и не превращаясь в нуль.

Интересные величины!

Последний кризис (последний по времени, но, надо полагать, не по счету) имел место на рубеже XIX-XX веков и был столь мощным, что затронул не только саму математику, но и логику, поскольку эти науки тесно связаны и язык, поскольку дело касалось способов точного выражения содержания наших мыслен.

К концу XIX века в качестве фундамента всего здания классической математики прочно утвердилась теория множеств, развитая выдающимся немецким ученым Г.Кантором. Понятие «множество» или «класс», «совокупность» — простейшее в математике. Оно не определяется, а поясняется примерами. Можно говорить о множестве всех книг, составляющих данную библиотеку, множестве всех точек данной прямой и т. д Далее вводится понятие «принадлежать», то есть «быть элементом множества». Так, книги, точки являются элементами соответствующих множеств. Для определения множества необходимо указать свойство, которым обладают все его элементы.

С появлением теории множеств казалось, что математика обретает ясность и законченность. Теперь ее грандиозное здание напоминало несокрушимую крепость. Оно было прочно заложено и обосновано во всех своих частях. Недаром же крупнейший французский математик того времени А. Пуанкаре в послании очередному математическому конгрессу торжественно заявлял, что отныне все может быть выражено с помощью «целых чисел и конечных и бесконечных систем целых чисел, связанных сетью равенств и неравенств».


Еще от автора Анатолий Константинович Сухотин
Превратности научных идей

Научно-художественная книга о трудностях и лишениях, сомнениях и надеждах, заблуждениях и гонениях, выпадающих на долю ученых, прежде, чем они добиваются торжества истины, а истина становится законом или теорией.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Пчелы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Мир животных. Млекопитающие. Часть 1

Акимушкин Игорь Иванович (1929-1993)Ученый, популяризатор биологии. Автор более 60 научно-художественных и детских книг.Родился в Москве в семье инженера. Окончил биолого-почвенный факультет МГУ (1952). Печатается с 1956.Автор научно-популярных книг о жизни животных (главным образом малоизученных): «Следы невиданных зверей», «Тропою легенд», «Приматы моря», «Трагедия диких животных» и др.Его первые книги для детей появились в 1961 г.: «Следы невиданных зверей» и «Тропою легенд: Рассказы о единорогах и василисках».Для малышей Игорь Иванович написал целый ряд книжек, используя приемы, которые характерны для сказок и путешествий.


Мир животных. Птицы

В первой книге «Мир животных» (автор задумал написать пять таких книг) рассказывается о семи отрядах класса млекопитающих: о клоачных, куда помещают ехидн и утконосов; об австралийских и южноамериканских сумчатых; насекомоядных, к которым относятся тенреки, щелезубы и всем известные кроты и землеройки; о шерстокрылах; хищных; непарнокопытных, сюда относятся лошадиные, тапиры и носороги, и, наконец, о парнокопытных: оленях, антилопах, быках, козлах и баранах.Второй выпуск посвящен остальным двенадцати отрядам класса млекопитающих: рукокрылым (летучие мыши и крыланы); приматам (полуобезьяны, обезьяны и человек), неполнозубым (ленивцы, муравьеды, броненосцы), панголинам (ящеры), зайцеобразным (пищухи, зайцы, кролики), грызунам, китообразным, ластоногим, трубкозубым, даманам, сиренам и хоботным.Третья книга рассказывает о птицах.


Охота за мыслью (заметки психиатра)

Если бы одна книга смогла вместить все о человеке, наверное, отпала бы нужда в книгах. Прочитав эту, вы узнаете новое о глубинных пружинах настроений и чувств; о веществах, взрывающих и лечащих психику; о скрытых резервах памяти; о гипнозе и тайных шифрах сновидений; о поисках и надеждах исследователей и врачей; кое-что о йогах и о том, что может сделать со своей психикой человек, если сам ею не слишком доволен.