От водорода до …? - [9]
Изучение радиоактивности открыло новый способ воздействия на атомное ядро, а именно: воздействие радиоактивным излучением. В 1919 г. английский физик Резерфорд применил для разрушений атомных ядер энергию альфа-частиц. «Бомбардируя» имя атомы азота, он получил ядра одного из изотопов кислорода. Вскоре с помощью альфа-частиц удалось расщепить ядра и других химических элементов.
Изучая действие альфа-частиц на атомы устойчивых элементов, известные французские ученые Ирен и Фредерик Жолио-Кюри открыли возможность получения радиоактивных изотопов многих элементов искусственным путем. Открытый этими учеными способ заключается в облучении атомов химических элементов быстро двигающимися частицами. Для сообщения частицам больших скоростей в настоящее время применяют специальные устройства — ускорители. Это огромные технические сооружения, позволяющие с помощью электрической энергии сообщать частицам огромные скорости, а значит и энергию. Чтобы судить о развиваемой при этом скорости, достаточно сказать, что в одну секунду частица совершает путь, во много раз превышающий длину окружности экватора. В крупнейшем ускорителе, советском синхрофазотроне, вступившем в строй в 1957 г., частицы получают огромные энергии — в 10 млрд. электронвольт. О размерах советского синхрофазотрона можно судить по электромагниту, весящему 36 000 т.
Открытие ядерных реакций, ведущих к получению новых, не встречающихся в природе радиоактивных изотопов, явилось величайшим достижением человеческого гения, позволившим создавать радиоактивные изотопы для любого элемента периодической системы Д. И. Менделеева. Хотя общее число радиоактивных изотопов, полученных в настоящее время, как уже указывалось, приближается к тысяче, наибольшее практическое применение имеет сравнительно небольшое их число.
Сами о себе
Многие века ученые полагали, что все существующие в природе цвета и их оттенки происходят в результате смешивания света с… «тьмой!». А так как «тьму» представляли носительницей черного цвета, то считалось, что основным цветом в природе является черный, от разбавления которого бесцветным «светом» получаются все остальные. Выходило, что, например, в синем цвете много «тьмы» и мало «света», в желтом, наоборот, много «света» и мало «тьмы».
Так думали, так считали, так утверждали. Однако никто не мог доказать справедливость такого заключения, никто не мог разложить какой-либо цвет на «тьму» и «свет».
И только в 1666 г. тогда еще молодой и мало известный, а впоследствии знаменитый физик, математик и астроном Исаак Ньютон впервые провел свой знаменитый опыт по разложению света с помощью стеклянной призмы. Суть этого опыта состоит в том, что если свет пропустить через стеклянную призму, то, пройдя ее, он развертывается в яркую полоску, составленную из различных постепенно переходящих один в другой цветов. В цветной полоске, получившей название спектра (от латинского слова «спектрум» — видимое) насчитывается семь цветов. Ньютон доказал, что существовавшее объяснение цветов неправильно. Оказалось, что не «тьма», а бесцветный свет, или белый цвет, как стали называть его впоследствии, является основным и состоит в свою очередь из семи цветов.
Почти двести лет спустя (в 1858 г.) после опытов Ньютона, профессор химии в Гейдельбергском университете Роберт Бунзен изобрел горелку для сжигания горючих газов. С помощью горелки Бунзена можно было получать пламя очень высокой температуры. Помещая в пламя горелки различные вещества, Бунзен заметил, что они, раскаляясь и превращаясь в пар, окрашивают пламя в различные цвета. Замечательным было то, что каждое вещество окрашивает пламя в определенный цвет. Так, например, медь дает пламя зеленого цвета, натрий — желтое пламя, стронций — малиново-красное.
Вначале Бунзен решил, что он открыл чрезвычайно простой, точный и, главное, быстрый способ анализа. Вместо длительных операций химического исследования вещества достаточно было внести исследуемое вещество в пламя горелки, чтобы по окраске пламени решить вопрос о природе вещества. Зеленое пламя укажет медь, желтое «скажет» о натрии, малиново-красное «откроет» стронций.
Но вскоре же пришло разочарование. Оказалось, что, например, литий дает пламя одинакового цвета со стронцием, слабая фиолетовая окраска пламени от калия исчезает, если вместе с ним присутствуют соединения натрия. Убедившись в том, что различные вещества, нагреваясь в горелке, дают очень часто пламя одинакового цвета, Бунзен уже был склонен прекратить свои исследования. Но ему помог Густав Кирхгоф, профессор физики, занимавший кафедру в том же Гейдельбергском университете.
Кирхгоф решил пропускать свет от окрашенного пламени через призму, рассчитывая установить закономерности спектра различных веществ. Расчет Кирхгофа оправдался: оказалось, что пламя каждого из различных веществ дает особый, отличный от всех других, спектр. Причем спектры пламени отличались от спектра белого света своим видом: они были не сплошными, а состояли из отдельных узких цветных полосок, почти линий, располагающихся в различных частях спектральной дорожки. Так, спектр лития состоял из одной яркой красной линии и одной оранжевой послабее. Спектр стронция, пары которого окрашивали пламя бунзеновской горелки в такой же малиново-красный цвет, как и литий, состоял из одной голубой, двух красных, оранжевой и желтой линий. Пары натрия давали спектр с двумя желтыми линиями, так близко расположенными друг к другу, что вначале она была принята за одну.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.
Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.