Основы реальности. 10 фундаментальных принципов устройства Вселенной - [30]
Частицы — воплощение полей.
Как уже говорилось выше, на основании работы Планка Эйнштейн предположил, что свет распространяется дискретными порциями — частицами, которые он назвал квантами света, а мы называем фотонами. Изначально физическое сообщество приняло идею Эйнштейна прохладно: было сложно совместить представление о том, что свет — это частицы, с описанием света на основании полей Максвелла. На счету теории Максвелла было много побед, включая эпохальное открытие Герца; ее подтверждали детальные исследования новых форм излучения.
Непрерывные в пространстве поля казались чем-то в корне отличным от частиц. Несмотря на экспериментальные свидетельства, трудно было представить, что свет может быть и тем и другим. Но позже эти противоречивые проявления его природы объединила концепция квантового поля.
В соответствии с названием квантовые поля остаются полями — заполняющей пространство средой. Есть квантовая версия и электрических, и магнитных полей. Они по-прежнему удовлетворяют уравнениям Максвелла, которые физики девятнадцатого столетия получили, еще ничего не зная о квантовой механике, а также некоторым дополнительным. Последние имеют отпугивающее название «коммутационные соотношения», но я буду называть их менее формально — «квантовые условия». Они — математическое выражение самой сути квантовой механики.
Общую идею квантовых условий предложил Вернер Гейзенберг в 1925 году, когда ему было двадцать четыре года. Вскоре, в 1926 году, Поль Дирак вывел квантовые условия с учетом специфики электрического и магнитного полей. Дираку тоже было двадцать четыре.
Чем больше уравнений, которые надо удовлетворить, тем меньше у них решений. Как мы уже говорили, Максвелл обнаружил, что свет — своего рода самовоспроизводящееся, движущееся возбуждение электрического и магнитного полей. Однако не все его решения удовлетворяют квантовым условиям — например, определенному соотношению между энергией возбуждения и его частотой (то есть скоростью осцилляций поля). Я сформулирую это важное соотношение как на словах, так и в виде простого уравнения. На словах оно звучит так: энергия возбуждения должна равняться произведению отличной от нуля постоянной, которая называется постоянной Планка, на частоту. В форме уравнения получаем: E = hν, где E — энергия, ν — частота, а h — постоянная Планка. Именно это соотношение в 1900 году предложил Планк, а Эйнштейн воспользовался им в 1905 году, когда предсказал существование фотонов. Эту формулу называют формулой Планка — Эйнштейна[62]. Потребовалось двадцать лет, чтобы физики освоились с этим основанным на экспериментах революционным предположением и выработали согласованную теоретическую интерпретацию, изложенную здесь. У нас есть и уравнения Максвелла, и дискретные порции света.
Эта великая история об электромагнитных полях и фотонах ведет непосредственно к еще одному ключевому моменту: объясняет, зачем и как природа производит такое огромное количество взаимозаменяемых «деталей». Если бы наш список фундаментальных составляющих закончился элементарными частицами, без ответа остался бы важнейший вопрос. Ведь на этом уровне мы должны постулировать, что каждый тип частиц существует во множестве идентичных копий: много одинаковых фотонов, электронов и так далее.
В истории промышленного производства введение стандартизованных, взаимозаменяемых деталей было великим открытием. Чтобы не отступать от шаблонов, потребовалось изобрести новые механизмы и материалы. И даже тогда многие детали изнашивались, ломались и деформировались со временем. С другой стороны, согласно наблюдениям, свойства фотонов одинаковы, где бы и когда бы мы их ни обнаружили. Независимо от источника свет данного цвета имеет одни свойства и одинаково взаимодействует с материей. Одинаковы и электроны, где бы они ни обнаруживались. Если бы, например, свойства электронов в разных атомах углерода не были идентичны, сами атомы также обладали бы разными свойствами и законы химии не работали бы.
Как природе это удается? Только проследив происхождение всех фотонов до общего, универсального магнитного поля, мы приходим к пониманию их единообразия. И, ведомые аналогией, мы вводим поле (назовем его электронным), возбуждениями которого являются электроны. Свойства всех электронов одинаковы, поскольку каждый является возбуждением одного и того же универсального поля.
Поля нужны для достижения локальности, а квантовые поля производят частицы. Теперь мы лучше понимаем, почему частицы существуют и почему они столь удивительно взаимозаменяемы. Нет необходимости вводить два разных сорта фундаментальных составляющих реальности — поля и частицы. Господствуют поля. А именно квантовые поля.
Если вернуться к истокам полевой концепции — к попыткам Фарадея представить себе влияние электричества и магнетизма на пространство, — становится понятно, как еще квантовые поля унифицируют наше представление о мире. Те же самые поля, порождающие фотоны, в соответствии с представлениями Фарадея — и уравнениями Максвелла — порождают электрические и магнитные силы.
Подведем итог.
Перед вами — уникальная книга, исследующая подоплеку новейших физических идей о массе, энергии и природе вакуума. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки.Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Верно ли, что красота правит миром? Этим вопросом на протяжении всей истории человечества задавались и мыслители, и художники, и ученые. На страницах великолепно иллюстрированной книги своими размышлениями о красоте Вселенной и научных идей делится Нобелевский лауреат Фрэнк Вильчек. Шаг за шагом, начиная с представлений греческих философов и заканчивая современной главной теорией объединения взаимодействий и направлениями ее вероятного развития, автор показывает лежащие в основе физических концепций идеи красоты и симметрии.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания. Эта книга совершает революцию в понимании эмоций, разума и мозга.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.