Основы реальности. 10 фундаментальных принципов устройства Вселенной - [21]
То, что тяготение должно быть врожденным, внутренне присущим материи и существенным для нее, дабы одно тело могло воздействовать на другое на расстоянии через пустоту, без посредства какого-либо агента, посредством и при участии которого действие и сила могли бы передаваться от одного тела к другому, представляется мне столь вопиющей нелепостью, что, по моему убеждению, ни один человек, способный со знанием дела судить о философских материях, не впадет в нее[41].
Ньютон понимал, что его закон всемирного тяготения нелокален — иными словами, он не соответствовал нашему третьему принципу, — и ему это очень не нравилось.
Для Ньютона и нескольких следующих поколений ученых этот очевидный недостаток был чисто теоретическим: на практике закон всемирного тяготения выполнялся удивительно точно. Можно сказать, что его недостатки имели эстетический или, для самого Ньютона, теологический характер. Казалось, это упущение Бога, вкус которого обычно безупречен.
Вера Ньютона в третий принцип — принцип локальности — оказалась на удивление провидческой. Начиная с середины XIX века, спустя много десятилетий после его смерти, физики начали заполнять пассивный «вакуум» — Ничто, или Пустоту, на которую жаловался Ньютон, — передающими силу субстанциями, которые мы называем полями. В современной физике фундаментальными кирпичиками, составляющими материю, являются поля, а не частицы[42].
Пример из практики: атомные часы
Атомные часы — великолепный пример действенности фундаментальных принципов.
Их ход задается колебаниями атомов. Физическое состояние определяет, как атомы меняются, а в данном случае — как быстро они колеблются (соблюдение первого принципа). Частота колебаний измерялась в разное время и в разных местах, и результаты всегда совпадали (соблюдение второго принципа), если в лабораториях предпринимались определенные меры предосторожности (использование третьего принципа). И, как уже говорилось раньше, частоты колебаний атомов измерены с удивительной точностью (соблюдение четвертого принципа).
И в этом случае, и в большинстве других экспериментов самое непростое — принять необходимые меры предосторожности. Чтобы получать надежные результаты, мы должны быть уверены: все сложные, точно настроенные приборы (лазеры, охлаждающая аппаратура, вакуумные камеры и большое количество электроники), предназначенные для захвата атомов и наблюдения за их поведением, работают стабильно. Эти приборы нужно предохранять от колебаний почвы, связанных с проезжающими по улице грузовиками и сейсмическим потряхиванием самой Земли. Нельзя позволить детям-шалунам или неосторожным студентам слоняться по лаборатории, прикасаясь к чему попало. Но суть третьего принципа в том, что все эти предосторожности и рутинные проверки температуры, влажности и так далее относятся только к локальным условиям. Например, грузовик может быть далеко, но существенны только колебания, ощутимые в лаборатории. А значит, не надо принимать во внимание далекие галактики, вспоминать, что происходило в прошлом, или думать о том, что произойдет в будущем.
В нашем случае главное — атомы. Какие непредвиденные изменения важно контролировать, чтобы получить воспроизводимые, высокоточные результаты, которыми славятся атомные часы? Во-первых, интересующие нас атомы необходимо удерживать отдельно от других — для этого предназначены охлаждающие аппараты и вакуумные камеры. А во-вторых, мы должны следить за электрическими, магнитными и гравитационными условиями, в которых находится атом, или, как говорят ученые, за значениями полей. Эти поля можно измерить локально, если следить за движением заряженных частиц и скоростью падения тел. Достаточно учесть значения этих величин и сделать соответствующие поправки. Как видите, список невелик. Теперь результатом измерений с очень высокой точностью будет неизменная частота атомных колебаний, а получив что-то другое, вы сделаете великое открытие, упущенное всеми прочими экспериментаторами!
С философской точки зрения важно отметить, что в таком подходе нет места каким-то гипотетическим сверхъестественным сущностям и мистицизму. Наш опыт с тонкими, сверхточными экспериментами создает большие трудности для тех, кто верит в способность разума непосредственно воздействовать на материю. Казалось бы, это прекрасная возможность произнести колдовской заговор, проявить экстрасенсорные способности и заработать вечную славу, продемонстрировав силу молитвы или визуализации желаний: строгий эксперимент помог бы зафиксировать любой малейший эффект. Но никто еще не преуспел на этом пути.
Прежде чем закончить разговор о фундаментальных принципах существования нашего мира, я проведу простой мысленный эксперимент: покажу, что было бы, если бы наши принципы оказались неправильными. Точнее, я опишу вероятные вселенные будущего, где они не соблюдаются.
Один из моих любимых мысленных экспериментов воплотился во многих научно-фантастических рассказах и в фильме «Матрица»[43]. Речь идет о неких разумных существах, игнорирующих свою физическую реальность. Для убедительности представим себе, что правы сторонники мощного искусственного интеллекта, допускающие нечто подобное в перспективе. Учитывая успешное развитие виртуальных технологий, звучит не так уж невероятно.
Перед вами — уникальная книга, исследующая подоплеку новейших физических идей о массе, энергии и природе вакуума. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки.Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Верно ли, что красота правит миром? Этим вопросом на протяжении всей истории человечества задавались и мыслители, и художники, и ученые. На страницах великолепно иллюстрированной книги своими размышлениями о красоте Вселенной и научных идей делится Нобелевский лауреат Фрэнк Вильчек. Шаг за шагом, начиная с представлений греческих философов и заканчивая современной главной теорией объединения взаимодействий и направлениями ее вероятного развития, автор показывает лежащие в основе физических концепций идеи красоты и симметрии.
Эта книга адресована сразу трем аудиториям – будущим журналистам, решившим посвятить себя научной журналистике, широкой публике и тем людям, которые делают науку – ученым. По сути дела, это итог почти полувековой работы журналиста, пишущего о науке, и редактора научно-популярного и научно-художественного журнала. Название книги «Научная журналистика как составная часть знаний и умений любого ученого» возникло не случайно. Так назывался курс лекций, который автор книги читал в течение последних десяти лет в разных странах и на разных языках.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Лиза Фельдман Барретт, известная ученая, занимающаяся исследованиями мозга, развенчивает мифы, настолько плотно укоренившиеся в нашем сознании, что многие годы они кажутся нам неопровержимыми научными фактами. Небольшие, интересные и понятные эссе (плюс одна короткая история об эволюции мозга) откроют вам дверь в удивительный мир человеческого разума. Вы узнаете, как начал формироваться мозг, какова его структура (и почему это важно понимать), как ваш мозг взаимодействует с мозгом других людей и создает всю ту реальность, в которой вы живете.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.