Основы объектно-ориентированного программирования - [272]

Шрифт
Интервал

Из руководства к коммерческой библиотеке функций языка C

Механизм однократных функций интересен и при работе с процедурами. Однократные процедуры могут применяться для инициализации общесистемного свойства, когда заранее неизвестно, какому компоненту это свойство понадобится первому.

Примером может стать графическая библиотека, в которой любая функция, вызываемая первой, должна предварительно провести настройку, учитывающую параметры дисплея. Автор библиотеки мог, конечно, потребовать, чтобы каждый клиент начинал работу с библиотекой с вызова функции настройки. Этот нюанс, в сущности, не решает проблему - чтобы справиться с ошибками, любая функция должна обнаруживать, не запущена ли она без настройки. Но если функции такие "умные", то зачем что-то требовать от клиента, когда можно нужную функцию настройки вызывать самостоятельно.

Однократные процедуры решают эту проблему лучше:


>check_setup is

>-- Настроить терминал, если это еще не сделано.

>once

>terminal_setup -- Фактические действия по настройке.

>end



Теперь каждая экранная функция должна начинаться с обращения к check_setup, первый вызов которой приведет к настройке параметров, а остальные не сделают ничего. Заметьте, что check_setup не должна экспортироваться клиентам.

Однократная процедура - это важный прием, упрощающий применение библиотек и других программных пакетов.

Параметры

Однократные процедуры и функции могут иметь параметры, необходимые, по определению, лишь при первом вызове.

Однократные функции, закрепление и универсальность

В этом разделе мы обсудим конкретную техническую проблему, поэтому при первом чтении книги его можно пропустить.

Однократные функции, тип которых не является встроенным, вносят потенциальную несовместимость с механизмом закрепления типов и универсальностью.

Начнем с универсальности. Пусть в родовом классе EXAMPLE [G] есть однократная функция, чей тип родовой параметр:


>f: G is once ... end



Рассмотрим пример ее использования:


>character_example: EXAMPLE [CHARACTER]

>...

>print (character_example.f)



Пока все в порядке. Но если попытаться получить константу с другим родовым параметром:


>integer_example: EXAMPLE [INTEGER]

>...

>print (integer_example.f + 1)



В последней инструкции мы складываем два числа. Первое значение, результат вызова f, к сожалению, уже найдено, поскольку f - однократная функция, причем символьного, а не числового типа. Сложение окажется недопустимым.

Проблема заключается в попытке разделения значения разными формами родового порождения, ожидающими значения, тип которого определяется родовым параметром. Аналогичная ситуация возникает и с закреплением типов. Представим себе класс B, добавляющий еще один атрибут к компонентам своего родителя A:


>class B inherit A feature

>attribute_of_B: INTEGER

>end



Пусть A имеет однократную функцию f, возвращающую результат закрепленного типа:


>f: like Current is once create Result make end



и пусть первый вызов функции f имеет вид:


>a2 := a1.f



где a1 и a2 имеют тип A. Вычисление f создаст экземпляр A и присоединит его к сущности a2. Все прекрасно. Но предположим, далее следует:


>b2 := b1.f



где b1 и b2 имеют тип B. Не будь f однократной функцией, никакой проблемы бы не возникло. Вызов f породил бы экземпляр класса B и вернул его в качестве результата. Но функция является однократной, а ее результат был уже найден при первом вызове. И это - экземпляр A, но не B. Поэтому инструкция вида:


>print (b2.attribute_of_B)



попытается обратиться к несуществующему полю объекта A.

Проблема в том, что закрепление вызывает неявное переопределение типов. Если бы f была переопределена явно, с применением в классе B объявления


>f: B is once create Resultl make end



при условии, что исходный вариант f в классе A возвращает результат типа A (а не like Current), все было бы замечательно: экземпляры A обращались бы к версии f для A, экземпляры B - к версии f для B. Однако закрепление типов было введено как раз для того, чтобы избавить нас от таких явных переопределений.

Эти примеры - свидетельства несовместимости семантики однократных функций (с процедурами все прекрасно) с результатами применения закрепленных типов и формальных родовых параметров. Одно из решений проблемы в том, чтобы трактовать такие случаи как явные переопределения, приняв за правило то, что результат однократной функции совместно используется лишь в пределах одной формы родовой порождения, а при закреплении результата - лишь среди экземпляров своего класса. Недостатком такого подхода, впрочем, является, что он не отвечает интуитивной семантике однократных функций, которые, с позиции клиента, должны быть эквивалентны разделяемым атрибутам. Во избежание недоразумений и возможных ошибок можно пойти на более суровые меры, наложив полный запрет на сценарии подобного рода:

Правило для однократной функции

Тип результата однократной функции не может быть закреплен и не может включать любой родовой параметр.

Константы строковых типов

В начале этой лекции были введены символьные константы, значением которых является символ. Например:


>Backslash: CHARACTER is '\'



Однако нередко классам требуются строковые константы, использующие, как обычно, для записи константы двойные кавычки: