Основы объектно-ориентированного программирования - [264]

Шрифт
Интервал

[x]. Это простое и элегантное решение нетрудно объяснить даже начинающим.

[x]. Оно полностью устраняет возможность нарушения системной корректности в ковариантно построенных системах.

[x]. Оно сохраняет заложенную выше концептуальную основу, в том числе понятия ограниченной и неограниченной универсальности. (В итоге это решение, по-моему, предпочтительнее типовых переменных, подменяющих собой механизмы ковариантности и универсальности, предназначенных для решения разных практических задач.)

[x]. Оно требует незначительного изменения языка, - добавляя одно ключевое слово, отраженное в правиле соответствия, - и не связано с ощутимыми трудностями в реализации.

[x]. Оно реалистично (по крайней мере, теоретически): любую ранее возможную систему можно переписать, заменив ковариантные переопределения закрепленными повторными объявлениями. Правда, некоторые присоединения в результате станут неверными, но они соответствуют случаям, которые могут привести к нарушениям типов, а потому их следует заменить попытками присваивания и разобраться в ситуации во время выполнения.

Казалось бы, дискуссию можно на этом закончить. Так почему же подход Закрепления не полностью нас устраивает? Прежде всего, мы еще не касались проблемы скрытия потомком. Кроме этого, основной причиной продолжения дискуссии является проблема, уже высказанная при кратком упоминании типовых переменных. Раздел сфер влияния на полиморфную и ковариантную часть, чем-то похож на результат Ялтинской конференции. Он предполагает, что разработчик класса обладает незаурядной интуицией, что он в состоянии для каждой введенной им сущности, в частности для каждого аргумента раз и навсегда выбрать одну из двух возможностей:

[x]. Сущность является потенциально полиморфной: сейчас или позднее она (посредством передачи параметров или путем присваивания) может быть присоединена к объекту, чей тип отличается от объявленного. Исходный тип сущности не сможет изменить ни один потомок класса.

[x]. Сущность является субъектом переопределения типов, то есть она либо закреплена, либо сама является опорным элементом.

Но как разработчик может все это предвидеть? Вся привлекательность ОО-метода во многом выраженная в принципе Открыт-Закрыт как раз и связана с возможностью изменений, которые мы вправе внести в ранее сделанную работу, а также с тем, что разработчик универсальных решений не должен обладать бесконечной мудростью, понимая, как его продукт смогут адаптировать к своим нуждам потомки.

При таком подходе переопределение типов и скрытие потомком - своего рода "предохранительный клапан", дающий возможность повторно использовать существующий класс, почти пригодный для достижения наших целей:

[x]. Прибегнув к переопределению типов, мы можем менять объявления в порожденном классе, не затрагивая оригинал. При этом чисто ковариантное решение потребует правки оригинала путем описанных преобразований.

[x]. Скрытие потомком защита от многих неудач при создании класса. Можно критиковать проект, в котором RECTANGLE, используя тот факт, что он является потомком POLYGON, пытается добавить вершину. Взамен можно было бы предложить структуру наследования, в которой фигуры с фиксированным числом вершин отделены от всех прочих, и проблемы не возникало бы. Однако при разработке структур наследования предпочтительнее всегда те, в которых нет таксономических исключений. Но можно ли их полностью устранить? Обсуждая ограничение экспорта в одной из следующих лекций, мы увидим, что подобное невозможно по двум причинам. Во-первых, это наличие конкурирующих критериев классификации. Во-вторых, вероятность того, что разработчик не найдет идеального решения, даже если оно существует.

Желая сохранить гибкость адаптации порожденных классов для наших нужд, мы должны разрешить и ковариантное переопределение типов, и скрытие потомком. Далее мы узнаем, как этого добиться.

Глобальный анализ

Этот раздел посвящен описанию промежуточного подхода. Основные практические решения изложены в лекции 17.

Изучая вариант с закреплением, мы заметили, что его основной идеей было разделение ковариантного и полиморфного наборов сущностей. Так, если взять две инструкции вида


>s := b ...

>s.share (g)



каждая из них служит примером правильного применения важных ОО-механизмов: первая - полиморфизма, вторая - переопределения типов. Проблемы начинаются при объединении их для одной и той же сущности s. Аналогично:


>p := r ...

>p.add_vertex (...)



проблемы начинаются с объединения двух независимых и совершенно невинных операторов.

Ошибочные вызовы ведут к нарушению типов. В первом примере полиморфное присваивание присоединяет объект BOY к сущности s, что делает g недопустимым аргументом share, так как она связана с объектом GIRL. Во втором примере к сущности r присоединяется объект RECTANGLE, что исключает add_vertex из числа экспортируемых компонентов.

Вот и идея нового решения: заранее - статически, при проверке типов компилятором или иными инструментальными средствами - определим набор типов (typeset) каждой сущности, включающий типы объектов, с которыми сущность может быть связана в период выполнения. Затем, опять же статически, мы убедимся в том, что каждый вызов является правильным для каждого элемента из наборов типов цели и аргументов.