Основы глубокого обучения - [4]
Математическое обсуждение искусственного нейрона мы закончим, выразив его функции в векторной форме. Представим входные данные нейрона как вектор x = [x>1x>2 … x>n], а веса нейрона как w = [w>1w>2 … w>n]. Теперь выходные данные нейрона можно выразить как y = f (x w + b), где b — смещение. Мы способны вычислить выходные данные из скалярного произведения входного вектора на вектор весов, добавив смещение и получив логит, а затем применив функцию активации. Это кажется тривиальным, но представление нейронов в виде ряда векторных операций очень важно: только в таком формате их используют в программировании.
Выражение линейных персептронов в виде нейронов
Выше мы говорили об использовании моделей машинного обучения для определения зависимости между результатом на экзаменах и временем, потраченным на обучение и сон. Для решения задачи мы создали линейный классификатор-персептрон, который делит плоскость декартовых координат надвое:
Как показано на рис. 1.4, это оптимальный вариант для θ: он позволяет корректно классифицировать все примеры в нашем наборе данных. Здесь мы видим, что наша модель h работает по образцу нейрона. Посмотрите на нейрон на рис. 1.8. У него два входных значения, смещение, и он использует функцию:
Рис. 1.8.Выражение результатов экзамена в виде нейрона
Легко показать, что линейный персептрон и нейронная модель полностью эквивалентны. И просто продемонстрировать, что одиночные нейроны более выразительны, чем линейные персептроны. Каждый из них может быть выражен в виде одиночного нейрона, но последние могут также отражать модели, которые нельзя выразить с помощью линейного персептрона.
Нейросети с прямым распространением сигнала
Одиночные нейроны мощнее линейных персептронов, но не способны решить сложные проблемы обучения. Поэтому наш мозг состоит из множества нейронов. Например, при помощи одного из них невозможно различить написанные от руки цифры. И чтобы решать более сложные задачи, нам нужны модели машинного обучения.
Нейроны в человеческом мозге расположены слоями. Его кора, по большей части отвечающая за интеллект, состоит из шести слоев. Информация перетекает по ним, пока сенсорные данные не преобразуются в концептуальное понимание[7]. Например, самый нижний слой визуальной зоны коры получает необработанные визуальные данные от глаз. Эта информация преобразуется в каждом следующем слое и передается далее, пока на шестом слое мы не заключаем, что видим кошку, банку газировки или самолет. На рис. 1.9 показан упрощенный вариант этих слоев.
Рис. 1.9.Простой пример нейросети с прямым распространением сигнала с тремя слоями (входной, скрытый, выходной) и тремя нейронами на каждый слой
На основе этих идей мы можем создать искусственную нейросеть. Она возникает, когда мы начинаем соединять нейроны друг с другом, со входными данными и выходными узлами, которые соответствуют ответам сети на изучаемую задачу. На рис. 1.9 показан простейший пример искусственной нейросети, схожей по архитектуре с той, что была описана в 1943 году в работе Маккаллоу и Питтса. В нижний слой поступают входные данные. Верхний (выходные узлы) вычисляет ответ. Средний слой (слои) нейронов именуется скрытым, и здесь
— вес соединения i-го нейрона в k-м слое с j-м нейроном в (k + 1) — м слое. Эти веса образуют вектор параметров θ, и, как и ранее, наша способность решать задачи при помощи нейросетей зависит от нахождения оптимальных значений для θ.В этом примере соединения устанавливаются только от нижних слоев к верхним. Отсутствуют связи между нейронами одного уровня, нет таких, которые передают данные от высшего слоя к низшему. Подобные нейросети называются сетями с прямым распространением сигнала, и мы начнем с них, потому что их анализировать проще всего. Такой разбор (процесс выбора оптимальных значений для весов) мы предложим в главе 2. Более сложные варианты связей будут рассмотрены в дальнейших главах.
Ниже мы рассмотрим основные типы слоев, используемые в нейросетях с прямым распространением сигнала. Но для начала несколько важных замечаний.
1. Как мы уже говорили, слои нейронов между первым (входным) и последним (выходным) слоями называются скрытыми. Здесь в основном и происходят волшебные процессы, нейросеть пытается решить поставленные задачи. Раньше (как при распознавании рукописных цифр) мы тратили много времени на определение полезных свойств; эти скрытые слои автоматизируют процесс. Рассмотрение процессов в них может многое сказать о свойствах, которые сеть научилась автоматически извлекать из данных.
2. В этом примере у каждого слоя один набор нейронов, но это не необходимое и не рекомендуемое условие. Чаще в скрытых слоях нейронов меньше, чем во входном: так сеть обучается сжатому представлению информации. Например, когда глаза получают «сырые» пиксельные значения, мозг обрабатывает их в рамках границ и контуров. Скрытые слои биологических нейронов мозга заставляют нас искать более качественное представление всего, что мы воспринимаем.
3. Необязательно, чтобы выход каждого нейрона был связан с входами всех нейронов следующего уровня. Выбор связей здесь — искусство, которое приходит с опытом. Этот вопрос мы обсудим детально при изучении примеров нейросетей.
“Была Прибалтика – стала Прое#алтика”, – такой крепкой поговоркой спустя четверть века после распада СССР описывают положение дел в своих странах жители независимых Литвы, Латвии и Эстонии. Регион, который считался самым продвинутым и успешным в Советском Союзе, теперь превратился в двойную периферию. России до Прибалтики больше нет дела – это не мост, который мог бы соединить пространство между Владивостоком и Лиссабоном, а геополитический буфер. В свою очередь и в «большой» Европе от «бедных родственников» не в восторге – к прибалтийским странам относятся как к глухой малонаселенной окраине на восточной границе Евросоюза с сильно запущенными внутренними проблемами и фобиями.
В книге дается представление авторов об экономике Северного Кавказа, существенно отличающееся от общепризнанного. Под вопрос ставятся многие сложившиеся мифы и стереотипы – тотальная депрессивность; масштабы безработицы и бедности; наличие барьеров, полностью исключающих модернизацию; дефицит финансовых средств как основная причина недостаточного экономического развития. Формулируются базовые принципы регионального развития, альтернативные традиционно принятым в северокавказской политике, предлагаются меры по их реализации.
На день сегодняшний перед вами самая необычная и еретическая книга по экономике в России и в мире. Два дерзких профессора из Стокгольма создали в 1999 г. книгу-предтечу «Бизнес в стиле фанк», но не посмели выйти «за околицу», к океану новых знаний. А мы рискнули! Беремся это доказать, ибо предлагаем за 15–20 лет уйти от денежного обращения и золотого стандарта. В работе – варианты конкретных проектов и концепций. Дана корректная оценка земле Русской и «брошен якорь в будущее». Дана концепция матрицы нового социального уклада.
Вопреки дифирамбам французских энциклопедистов, а также мнению многих деятелей науки и культуры, живших в разные времена и считающих человека венцом творения, homo sapiens сам по себе не является идеальным и, к сожалению, все больше отдаляется от библейских стандартов. В наше время охваченные страстью потребительства люди далеко не всегда сознают, что творят. Ведь и современный кризис, как известно, стал следствием циничного прагматизма, а точнее, превысившей все пределы элементарной человеческой жадности руководителей банковских корпораций, которые в погоне за прибылью безответственно предоставили кредиты неспособным к их оплате потребителям.
Данную книгу можно назвать практической энциклопедией. В ней дан максимальный охват проблематики обеспечения информационной безопасности, начиная с современных подходов, обзора нормативного обеспечения в мире и в России и заканчивая рассмотрением конкретных направлений обеспечения информационной безопасности (обеспечение ИБ периметра, противодействие атакам, мониторинг ИБ, виртуальные частные сети и многие другие), конкретных аппаратно-программных решений в данной области. Книга будет полезна бизнес-руководителям компаний и тем, в чью компетенцию входит решение технических вопросов обеспечения информационной безопасности.Все права защищены.
В этой книге авторы пытаются показать, как возник и развивается кризис и как реагируют на него государство, предприниматели и простые люди. Кому-то это поможет разобраться в происходящем, кому-то – понять, почему привычный мир оказался таким неустойчивым.Ожидание ужаса сильнее самого ужаса. И есть основания полагать, что если нефтяные цены и уровень зарплаты к осени не восстановятся (похоже, что так), к сентябрю-октябрю 2009 года новые правила не только оформятся, но станут понятны всем. А это означает, что в нашей жизни вновь появится определенность и предсказуемость, и мы – в очередной раз – прорвемся.Эта книга – хроника развертывания кризиса в российской экономике с сентября по ноябрь 2008 года, написанная на основе публикаций в газете «Коммерсантъ» и журналах «Деньги», «Власть» и «Секрет фирмы».
Скотт Янг, изучив результаты последних исследований и опыт выдающихся личностей, нашел те методы обучения, которые дают максимальный эффект: позволяют лучше понять и запомнить информацию, а также раскрыть новые таланты. Он сформулировал девять принципов быстрого самообразования, позволяющие осваивать сложные навыки, получать необходимые знания, максимизировать конкурентные преимущества и выстраивать карьеру. Эти принципы пригодятся всем, кто хочет научиться чему-либо самостоятельно: овладеть языком (или несколькими языками), получить новую профессию или освоить несколько инструментов для создания продукта или бизнеса с нуля. На русском языке публикуется впервые.
Иван Чаплыгин рассказывает о сложных отношениях внутри пары автор – переводчик. Он позволит заглянуть на переводческую кухню и буквально на пальцах покажет, чем хороший перевод отличается от посредственного и откровенно плохого. Иван расскажет о чувстве слова, неоправданной русификации и переводческих головоломках. О заслуженной критике и необоснованных придирках. А еще о конкуренции среди переводчиков, о поиске заказчиков и об удовольствии от работы. Эта книга поможет вам понять, как находить суть в мутной воде авторского высказывания и как передавать смысл, не искажая оригинал и не привнося в него собственное звучание.
Книга о корпоративной культуре Netflix, которая построена вокруг свободы и ответственности. Именно культура позволила компании вырасти из небольшой фирмы по прокату DVD в гиганта развлекательной индустрии.
Рэй Далио, успешный инвестор и один из самых влиятельных людей планеты, основатель компании Bridgewater, исследует империи прошлого, выявляет закономерности взлетов и падений ведущих мировых экономик и делает выводы относительно настоящего и будущего в сфере макроэкономики и геополитики.