Осциллограф - ваш помощник (как работать с осциллографом) - [6]

Шрифт
Интервал

Однако измеренные пульсации в данном случае справедливы для тока нагрузки около 18 мА (определяется резистором R1). При увеличении тока нагрузки возрастут и пульсации. В этом вы можете убедиться сами, подключая к выпрямителю резисторы сопротивлением 510 Ом, а затем 300 Ом и измеряя амплитуду пульсаций в каждом случае.

Значительно уменьшить пульсации переменного тока можно, питая нагрузку через параметрический стабилизатор, подключенный к выпрямителю (рис. 12, а).

Для него понадобится стабилитрон VD5 и балластный резистор R1. Причем напряжение на нагрузке (резистор R2) будет определяться только используемым стабилитроном. К примеру, для указанного на схеме стабилитрона Д814Д оно составит 11,5…14 В (таков разброс напряжения стабилизации в зависимости от конкретно установленного экземпляра), для Д814Г — 10…12 В, для Д814В — 9…10,5 В и т. д.

Измерьте теперь амплитуду пульсаций на нагрузке — она составит около 0,02 В при емкости фильтрующего конденсатора 200 мкФ, т. е. значительно меньше даже по сравнению с пульсациями при конденсаторе фильтра 1000 мкФ! Иначе говоря, параметрический стабилизатор позволяет «сэкономить» емкость конденсатора фильтра.

А теперь вообще отключите конденсатор фильтра — на экране осциллографа, подключенного параллельно резистору нагрузки R2 появится изображение полупериодов синусоидального напряжения со срезанными вершинами (рис. 12, б). Это результат «работы» стабилитрона. До определенного напряжения он «выключен», после чего «пробивается» — напряжение на нем остается равным напряжению стабилизации (правда, оно немного изменяется в зависимости от тока через стабилитрон).



Рис. 12


Подключив вновь конденсатор фильтра, установите параллельно резистору нагрузки еще один резистор — сопротивлением 600…800 Ом. Пульсации на выходе стабилизатора резко возрастут и станут равными пульсациям на конденсаторе фильтра. Причина в том, что ток нагрузки возрос и стабилитрон вышел из режима стабилизации, т е. практически перестал действовать.

При указанном на схеме сопротивлении балластного резистора к стабилизатору можно подключить нагрузку, потребляющую ток до 7 мА. Если же сопротивление балластного резистора уменьшить до 130 Ом, ток нагрузки может доходить до 20 мА.

А как быть, если стабильным напряжением нужно питать нагрузку со значительно большим током потребления? В этом случае достаточно подключить к стабилитрону усилитель тока — эмиттерный повторитель на мощном транзисторе VT1 (рис. 13, а). Теперь даже при подключении к выходу получившегося блока питания резистора сопротивлением 100…130 Ом, что эквивалентно нагрузке с током потребления около 1 (X) мА, пульсации возрастут лишь вдвое. Правда, напряжение на нагрузке будет несколько меньше, чем на стабилитроне — из-за падения напряжения на эмиттерном переходе транзистора (0,5…0,7 В).

При больших токах нагрузки транзистор выбирают с возможно большим коэффициентом передачи тока. Если же в наличии лишь транзистор с малым коэффициентом передачи, добавляют к нему маломощный транзистор (рис. 13, б) — и в итоге получается составной транзистор с большим коэффициентом передачи тока. Правда, в этом случае напряжение на выходе будет уже отличаться от напряжения на стабилитроне на 1…1.4 В. В любом варианте мощный транзистор нужно укрепить на теплоотводящей пластине из дюралюминия, алюминия или меди толщиной 2…3 мм и общей площадью поверхности не менее 15 см>2 (рис. 13, в).

С собранным блоком питания проведите эксперименты, подключая к выходу нагрузки с различными токами потребления и измеряя амплитуду пульсаций. Одновременно контролируйте амплитуду пульсаций на конденсаторе фильтра.

Результаты измерений позволят еще раз оценить зависимость пульсаций от емкости фильтрующего конденсатора и тока нагрузки.



По фигурам Лиссажу

Определять частоту синусоидальных колебаний с помощью установленной на осциллографе ОМЛ-2М длительности развертки вы уже умеете. А если придется работать с другим осциллографом, у которого нет калибровки длительности? Тогда нужно воспользоваться методом сравнения неизвестной частоты с известной по фигурам Лиссажу.

Но прежде чем перейти к знакомству с этим методом, соберем макет простого генератора сигналов 34, поскольку подобного измерительного прибора у вас может не оказаться. Кроме того, на макете вы познакомитесь с методикой проверки и налаживания генератора.

Схема генератора приведена на рис. 14. Нетрудно заметить, что без цепи из деталей C1, С2, R1 —R3 устройство, выполненное на транзисторах VT1, VT2,— не что иное, как двухкаскадный усилитель 3Ч с непосредственной связью между каскадами и отрицательной обратной связью по постоянному и переменному токам (через резистор R6). При подключении указанной цепи, называемой в технике мостом Вина, между выходом и входом усилителя образуется положительная обратная связь. Усилитель самовозбуждается. На коллекторной нагрузке транзистора VT2 (резистор R7) появляются колебания, частота которых зависит от емкости конденсаторов C1 и С2, а также от сопротивлений резисторов R1.1, R2 и R3, R1.2. Сдвоенным переменным резистором RI «Частота» можно плавно изменять частоту колебаний.


Рекомендуем почитать
Искусство схемотехники. Том 1 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.


Искусство схемотехники. Том 3 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.


Электроника?.. Нет ничего проще!

Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.Книга рассчитана на широкий круг читателей.


А. С. Попов и советская радиотехника

Более полувека назад произошло одно из самых славных событий в истории русской науки: 7 мая 1895 г. великий русский учёный А. С. Попов продемонстрировал изобретённый и построенный им первый в мире радиоприёмник. С тех пор радиотехника прошла огромный путь развития — от посылки и приёма телеграфных сигналов до передачи изображений по радио. Радио стало мощнейшим средством связи и обороны нашей Родины, орудием политического и культурного воспитания, могучим средством организации масс.


Рецептура радиолюбителя (Консультация центрального радиоклуба)

В данной листовке приводится ряд рецептов склеивания, встречающихся в радиолюбительской практике, способы художественной отделки деревянных ящиков для радиоаппаратуры и некоторые практические советы радиолюбителям.


Радиоцензура

В отличие от темы иновещания тематика радиотехнической борьбы между "социалистическим" лагерем и капиталистическими странами остаётся практически неизвестной массовому читателю.В данной работе автор - Римантас Плейкис (бывший министр связи Литвы в 1996-1998 гг.) подробно рассматривает радиоцензуру (синонимы: радиозащита, радиоподавление, постановка помех, глушение, радиопротиводействие, забивка антисоветских радиопередач, радиоэлектронная борьба).Без преувеличения эта статья, написанная в 2002-2003 годах, закрывает еще одно "белое пятно" в противостоянии двух военно-политических блоков и раскрывает технологию радиотехнической цензуры.К сожалению, для русскоязычных читателей доступен только электронный вариант данного исследования.