OrCAD PSpice. Анализ электрических цепей - [8]

Шрифт
Интервал

>0=160 Гц. Входной файл изменяется следующим образом:

>Series-parallel ас Circuit

>Vs 1 0 ас 100V

>R1 1 2 10

>R2 2 3 10

>L 3 0 100mH

>С 2 0 10uF

>.ас LIN 151 50Hz 200Hz

>.probe

>.END

Сохраните новую версию входного файла под именем acpre1.cir с помощью команд File, Save As… Нет необходимости закрывать и снова открывать файл, если к предыдущему имени добавлен символ 1. 

Команда ас дает линейную вариацию для 151 значения по частоте в диапазоне от 50 до 200 Гц. Это означает, что вычисления производятся для каждого целого значения частоты в этом диапазоне. Команда .probe помещает результаты моделирования в файл данных программы Probe, которому в данном случае будет присвоено имя acpre1.dat.

Probe

Как было отмечено, нет необходимости закрывать и снова открывать файл acpre1.cir. Просто выберите Simulation, Run acpre1.cir. Когда моделирование закончится, на экране возникнет область, в которой может быть показан график. Это — окно программы Probe, включенной в состав PSpice. Ось X по умолчанию показана в пределах от 100 Гц до 1 кГц. Поскольку нас интересует только часть этой области, изменим границы, выбрав Plot, Axis Settings… В таблице оси X выберем User Defined и введем значения от 50 Hz до 200 Hz, затем выберем Linear Scale и нажмем OK. Чтобы получить график, называемый trace, выберем Trace, Add Trace, а в поле Trace Expressions: наберем

>IP(R1)

При этом будет построен график фазы тока через R>1 который является током источника. Измените размеры окна, если это необходимо, чтобы разглядеть детали графика.

Вы можете добавить к графику текст, выбрав Plot, Label, Text и набрав

>Phase angle of circuit current

Затем нажмите OK и переместите текст в нужное место с помощью мыши. Дополните текст словами:

>Relative to input voltage

Поместите эту строку непосредственно под первой. Затем выведите график на печать, выбрав File, Print и осуществив стандартные операции распечатки. Сравните полученный результат с приведенным на рис. 0.7.

Рис. 0.7. Графический выходной файл, полученный в программе Probe


Оставаясь пока в Probe, вызовите курсор, выбрав Trace, Cursor, Display. В нижнем правом углу экрана появится окно Probe Cursor со следующим текстом:

>А1 = 50.000, 257.073

>А2 = 50.000, 257.073

>dif = 0.000, 0.000

А1 — значение начальной частоты (по оси X), IP — угол фазового сдвига. До тех пор пока курсор не сдвинут, значение А2 повторяет значение А1. С помощью мышки сдвиньте курсор в позицию, при которой фазовый сдвиг примерно равен 0, а затем с помощью левой и правой стрелок установите значение точно в 0. На дисплее курсора появятся значения

>А1 = 158.355, 0.000

>А2 = 50.000, -57.073

>dif = 108.355, 57.073

Значение А1 покажет новую частоту 158,335 Гц и фазовый угол 0°. Значение dif (разность) очевидно. Отметим, что значение 0,000 для фазового сдвига представляет собой результат округления, реальное значение не равно нулю в точности. Поэтому если повторить моделирование, вы можете получить несколько иной результат. Вид экрана показан на рис. 0.8.

Рис. 0.8. Определение фазового сдвига с помощью функции Cursor в программе Probe  


Отметим, что окна View, Output и View Simulation Status могут включаться и выключаться. Удалим табло курсора (которое также может включаться и выключаться) и выберем Plot, Add Plot. При этом поверх первого окна появится второе окно для новой кривой. Оно будет пустым до тех пор, пока вы не определите, какой из графиков должен появиться. Отметим, что окно Add Trace представляет список величин, для которых могут быть построены графики. Щелкните мышью в поле I(R1) и этот ток появится на графике. Наберите «,» (запятую) и выберите I(C) — появится график этого тока, снова наберите «,» (запятую) и выберите I(L) для третьей кривой. Щелкните мышкой на OK и в верхнем окне появятся три кривые.

Используйте команды Plot, Axis Setting, чтобы изменить пределы по осям Y.

Выберите маркер User defined, затем введите значения от 0 А до 3.0 А, чтобы изменить значения диапазона, и нажмите OK. Затем разметьте кривые, как показано на рис. 0.9, чтобы пояснить распечатку[3]. Отметим, что амплитуда общего тока меньше амплитуды тока в индуктивной ветви. В то же время она меньше и амплитуды тока в емкостной ветви.

Рис. 0.9. Разметка кривых в выходном файле программы Probe

Анализ транзисторных схем

Следующая предварительная схема представляет собой усилитель на биполярном транзисторе (BJT) с типовой схемой смещения на двух резисторах. Эта схема представлена на рис. 0.10. PSpice допускает использование встроенных моделей для биполярных транзисторов и других приборов. Допустим, что транзистор имеет коэффициент усиления для большого сигнала h>FE= 80 и что при типовых условиях смещения V>BE=0,8 В.

Рис. 0.10. Цепи смещения для биполярного транзистора


Прежде чем перейти к моделированию на PSpice, определим смещающие токи и напряжения обычными методами. Если в процессе предшествующего обучения вы познакомились с этими методами, вы поймете следующее краткое описание. При открытии транзистора по базовой цепи напряжение эквивалентного генератора V>Th (по теореме Тевенина) можно найти, пользуясь выражением для делителя напряжения: