OrCAD PSpice. Анализ электрических цепей - [32]
Рис. 2.35. Схема для анализа улучшения коэффициента мощности
Необходимо получить входной файл, который покажет общий ток и токи ветвей в зависимости от приложенного напряжения:
>Single-Phase Motor, 5 hp
>V 1 0 AC 117V
>RA 1 2 0.01
>RB 2 3 0.01
>R 3 0 2.88
>L 3 0 9.12mH
>.AC LIN 1 60Hz 60Hz
>.print ac i(RA) iP(RA) i(RB) iP(RB)
>.print ac i(R) iP(R)
>.print ac i(L) iP(L)
>.opt nopage
>.end
Выходной файл покажет следующие значения токов:
>I(RA)=5.263Е+01, IP(RA)= -3.962Е+01
>I(RB)=5.263E+01, IP(RB)= -3.962E+01
>I(R) =4.034E+01, IP(R) = 3.310E-01
Значение линейного тока I(RA) близко к рассчитанному значению 53 А при фазовом угле, близком -40°. Коэффициент мощности pf (power factor) найден как косинус угла между векторами линейного тока и линейного напряжения:
pf = cos(-40°) = 0,76.
Сумма векторов токов ветвей (токи через R и L двигателя) равна линейному току. Теперь просто показать эффект подключения конденсатора между линиями (между узлами 2 и 0). Добавим во входной файл команду
>С 2 0 380uF
и изменим одну из команд печати, чтобы включить в выходной файл ток через конденсатор. Теперь выполните анализ снова. Выходной файл покажет следующее:
>I(RA) = 4.411Е+01, IP(RA) =-2.299Е+01
>I(RB) = 5.296Е+01, IP(RB) = -3.993Е+01
>I(C) = 1.676Е+01, IP(C) = 9.001Е+01
>I(R) = 4.060E+01, IP(R) = 2.510E-02
>I(L) = 3.401E+01, IP(L) = -8.997E+01
Мы видим, что линейный ток I(RA) уменьшился до 44,11 А при отстающем угле ≈23°, ясно показывая эффект повышения коэффициента мощности. Коэффициент мощности теперь равен
pf = cos(-23°) = 0,92.
Конденсатор проводит ток 16,76 А с фазовым углом 90°, вызывая изменение линейного тока. Обратите внимание, что ток через резистор датчика R>B равен прежнему значению линейного тока, как и следовало ожидать.
Исправление коэффициента мощности в трехфазных цепях
На рис. 2.36 компонентами, показанными справа, представлен трехфазный двигатель, включенный по схеме треугольника. Компоненты R>1, и L>1 — это, соответственно, сопротивление и индуктивность двигателя «на фазу». Другие фазы имеют те же значения компонентов.
Рис. 2.36. Трехфазный двигатель, подключенный по схеме треугольника
В каждую из линий трехфазной сети включены резисторы, понижающие линейное напряжение. Во входной файл включены команды, обеспечивающие вывод различных напряжений и токов. Он показан в составе выходного файла на рис. 2.37.
>Circuit for Power-Factor correction
>VAB 12 2 AC 240V 0
>VBC 20 0 AC 240V - -120
>VCA 10 1 AC 240V 120
>RS1 12 1 0.01
>RS2 20 2 0.01
>RS3 10 0 0.01
>RA 1 3 0.01
>RB 2 4 0.01
>RC 0 5 0.01
>R1 3 2B 2.5
>R2 5 0С 2.5
>R3 4 1A 2.5
>L1 1A 3 9.28MH
>L2 2B 5 9.28MH
>L3 0С 4 9.28MH
>.AC LIN 1 60HZ 60HZ
>.PRINT AC I(RA) IP(RA)
>.PRINT AC I(RB) IP(RB)
>.PRINT AC I(RC) IP(RC)
>.PRINT AC I(R1) IP(R1)
>.PRINT AC I(R2) IP(R2)
>.PRINT AC I(R3) IP(R3)
>.PRINT AC V(1A, 2B) VP(1A,2B)
>.PRINT AC V(2B,0C) VP(2B,0C)
>.PRINT AC V(0C,1A) VP(0С,1А)
>.OPT NOPAGE
>.END
>FREQ I(RA) IP(RA)
>6.000E+01 9.615E+01 -8.402E+01
>FREQ I(RB) IP(RB)
>6.000E+01 9.615E+01 1.560E+02
>FREQ I(RC) IP(RC)
>6.000E+01 9.615E+01 3.598E+01
>FREQ I(R1) IP(R1)
>6.000E+01 5.551E+01 -1.140E+02
>FREQ I(R2) IP(R2)
>6.000E+01 5.551E+01 5.981E+00
>FREQ I(R3) IP(R3)
>6.000E+01 5.551E+01 1.260E+02
>FREQ V(1A,2B) VP(1A,2B)
>6.000E+01 3.220E+02 -1.316E+02
>FREQ V(2B,0C) VP(2B,0C)
>6.000E+01 3.220E+02 -1.157E+01
>FREQ V(0C,1A) VP(0С,1А)
>6.000E+01 3.220E+02 1.084E+02
Рис. 2.37. Выходной файл для анализа схемы на рис. 2.36
Обратите внимание на порядок следования индексов в каждой инструкции. Для каждого пассивного элемента индексы находятся в соответствии с направлениями токов, показанными на рис. 2.36. Векторная диаграмма токов и напряжений показана на рис. 2.38. Угол между напряжением фазы V(1a, 2b) и током фазы I(R1) равен: 3,22+51,23=54,45°. Ток отстает от напряжения на 54,45°. Косинус этого угла — коэффициент мощности
pf = cos(-54,45°) = 0,581.
Рис. 2.38. Векторная диаграмма токов и напряжений в схеме на рис. 2.36
Мы собираемся улучшить коэффициент мощности, включив в схему батарею конденсаторов, как показано на рис. 2.39. Изменим входной файл, чтобы показать присутствие конденсаторов. После выполнения анализа на PSpice результаты должны быть такими, как показано на рис. 2.40.
Рис. 2.39. Схема питания трехфазного двигателя с конденсаторами для исправления коэффициента мощности
>Circuit for Power-Factor correction
>VAB 12 2 AC 240V 0
>VBC 20 0 AC 240V -120
>VCA 10 1 AC 240V 120
>RS1 12 1 0.01
>RS2 20 2 0.01
>RS3 10 0 0.01
>RA 1 3 0.01
>RB 2 4 0.01
>RC 0 5 0.01
>R1 3 2B 2.5
>R2 5 0C 2.5
>R3 4 1A 2.5
>L1 1a 3 9.28mH
>L2 2b 5 9.28mH
>L3 0c 4 9.28mH
>C1 la 2b 150uF
>C2 2b 0c 150uF
>C3 0c 1a 150uF
>.AC LIN 1 60HZ 60HZ
>.PRINT AC I(RA) IP(RA) I(C1) IP(C1)
>.PRINT AC I(RB) IP(RB) I(C2) IP(C2)
>.PRINT AC I(RC) IP(RC) I(C3) IP(C3)
>.PRINT AC I(R1) IP(R1)
>.PRINT AC I(R2) IP(R2)
>.PRINT AC I(R3) IP(R3)
>.PRINT AC V(1A,2B) VP(1A,2B)
>.PRINT AC V(2B, 0C) VP(2B,0C)
>.PRINT AC V(0C,1A) VP(0С,1A)
>.OPT NOPAGE
>.END
>FREQ I(RA) IP(RA) I(C1) IP(C1)
>6.000E+01 9.257E+01 -9.335E+01 2.152E+01 -6.090E+01
>FREQ I(RB) IP(RB) I(C2) IP(C2)
>6.000E+01 9.257E+01 1.467E+02 2.152E+01 5.910E+01
>FREQ I(RC) IP(RC) I(C3) IP(C3)