Охотники за частицами - [34]

Шрифт
Интервал

Здесь мы не будем описывать открытия Эйнштейна. Это описание можно найти в любой популярной книге по теории относительности. Укажем лишь на гораздо более высокую требовательность этого принципа.

Принципу Галилея часто угодить довольно легко. Как выразился один физик, «этот принцип протестует только в том случае, когда к нему подносят на проверку теории неравномерных, ускоренных движений».

Принцип Эйнштейна гораздо более разборчив. Со времени своего открытия он успел отвергнуть множество скороспелых теорий, на вид таких правильных и убедительных. Прошли старые добрые времена. Теперь ворота, через которые может пройти в рай физическая теория, стали очень-очень узкими.

На теориях, не пролезших сквозь эти ворота, принцип Эйнштейна ставит железное клеймо: «релятивистски неинвариантны». А по-русски: «уравнения и решения теории зависят от выбора системы отсчета при движении тел с околосветовыми скоростями».


Странный «минус»

Жаль, думает Дирак. Придется искать другие, обходные пути на холм. С принципом Эйнштейна не спорят.

После раздумий Дирак составляет другое уравнение. Оно гораздо сложнее первого, но в одном печалиться нет оснований. Строгая проверка его решений показывает, что на сей раз они релятивистски инвариантны. Причем — все.

Как это понять? Разве у уравнения Дирака не одно решение? Оказывается, нет: оно имеет целых четыре решения! И вместе с тем все они описывают один и тот же электрон.

Понять смысл первых двух решений удается сравнительно быстро. Осматривая окрестности с высоты первой завоеванной ступеньки, Дирак замечает явление, открытие которого имеет к тому времени почти трехлетнюю давность. Это открытие спина Уленбеком и Гаудсмитом, о чем мы уже рассказывали в предыдущей главе.

Погрешив против истины, ученые вначале для простоты объясняли спин, как некое «собственное вращение» электрона. И летящий электрон уподобили снаряду, выпущенному из нарезного орудия: он и летит и вращается одновременно.

Почему бы не существовать орудиям как с правой, так и с левой нарезкой? Тогда один снаряд вращался бы в полете по часовой, а другой — против часовой стрелки. Спин такого снаряда в одном случае «смотрел» бы, например, вдоль, а в другом — против направления движения.

Не все ли равно? Действительно, оба направления вращения нельзя никак отличить друг от друга не только у снарядов, но и у электронов. Так будет казаться физикам еще добрых тридцать лет. И только тогда выяснится, что… впрочем, всему свое время.

Пока что Дирак принимает, что для электрона возможна как правая, так и левая «нарезка». Этим двум направлениям спина и отвечают первые два решения. Остаются еще два. С ними дело обстоит гораздо сложнее.

Вернее, с одним из них. Как оказывается, оно соответствует отрицательной полной энергии электрона.

Что же в этом необычного? Физикам отрицательная полная энергия в диковинку. Она отвечает несвободным частицам, например электронам в атоме, в куске металла и вообще в любой яме. Собственно, отрицательность энергии означает лишь, что частица не может двигаться, как ей вздумается. Она находится в коллективе других частиц, связана в нем, а значит, следует правилам поведения, принятым в этом коллективе.

Но уравнение Дирака написано ведь для совершенно свободного электрона!

Да, интересное положение…

Потенциальная энергия у любой свободной частицы, как известно, равна нулю, и полная ее энергия совпадает с кинетической. Отрицательная кинетическая энергия! Мы с этим уже встречались: помните туннельный эффект?

Только там это на поверку оказалось фикцией, а здесь — чистой явью. И следствие этого вам тоже понятно: значит, отрицательна масса электрона.

Замечательно! Если бы из таких, с позволения сказать, частиц состоял, например, поезд, то он двигался бы сверхоригинально. Локомотив тащил бы его, скажем, в Ленинград, а поезд преспокойно удалялся бы в Москву!

Дирак и сам понимает, что это «замечательно». Любой человек на его месте поступил бы так, как делает, когда у него в ответе получается: «площадь дома равняется ±100 квадратных метров». Отбросил бы минус, как не имеющий никакого физического смысла.

Дирак, как англичанин, может быть полон здравого смысла. Но как истинный ученый, он пытается докопаться до происхождения этого «минуса».

Проходит немного времени, и Дирак превращает странный «минус» в один из самых выдающихся «плюсов» за всю историю физики!


Минута затишья

Довольно быстро выясняется, что все становится на свои места, если отрицательную энергию приписать положительно заряженной частице. Такая частица физикам известна — это протон.

Можно обрести успокоение, но ненадолго. Спустя полгода Роберт Оппенгеймер доказывает, что такой частицей протон быть не может. Он слишком массивен: положительная частица должна иметь такую же массу, что и электрон.

Ох, этот Роберт Оппенгеймер! Блестящий ученый, отличный организатор (это он руководил работой ученых по созданию американской атомной бомбы), многогранно одаренный человек. Но странный талант: он открыл много дверей в мир неизведанного, а не вошел ни в одну из них. История науки знает таких людей. Они первые дают сигнал к атаке, но наступление продолжается без них. Они же тем временем готовят удар на другом участке фронта.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.