Огненный воздух - [5]
Многоступенчатый компрессор сжимает очищенный атмосферный воздух. Пройдя по внутренней трубке первого теплообменника, сжатый воздух разделяется на два потока. Один поток, составляющий около четырех пятых всего воздуха, направляется в детандер и, расширяясь, приводит в движение его поршень. При этом воздух значительно охлаждается. Затем он омывает внутренние трубки обоих теплообменников и, отдав свой холод текущим навстречу свежим порциям воздуха, покидает машину. Второй поток воздуха, охлажденный еще больше во втором теплообменнике, направляется через вентиль в расширительную камеру, затем вместе с воздухом из детандера идет к выходу. Вскоре наступает момент, когда сжатый воздух, устремляющийся в расширительную камеру, достигает температуры ожижения и часть его превращается в светло-голубую жидкость. Когда накопится достаточное количество этой жидкости, кран открывают и жидкий воздух выливают. Работа воздуха в детандере не пропадает даром. Поршень детандера может приводить в действие динамомашину. Но чаще всего механическая энергия детандера передается валу компрессора, в котором сжимается воздух. Таким образом, часть энергии, затраченной на сжатие воздуха, компрессор получает обратно, а это снижает расход энергии на ожижение воздуха.
СБЕРЕЖЕНИЕ ХОЛОДА
Итак, мы уже знаем, что теплообменник дает возможность получать весьма низкие температуры, необходимые для ожижения воздуха и других газов. Но одним этим роль теплообменника в установках глубокого холода не ограничивается.
Ведь ожижается обычно лишь небольшая часть расширяющегося воздуха. Однако охлаждать до низких температур приходится весь поступающий в установку воздух. Если бы не было теплообменника, воздух, не превращенный в жидкость, покидал бы установку при температуре около — 190 градусов и уносил бы с собою большое количество дорогостоящего холода. Но благодаря теплообменнику расширяющийся воздух покидает установку глубокого холода при температуре, очень мало отличающейся от температуры атмосферного воздуха. В современных установках эта разница температур обычно не превышает 4–5 градусов. Это значит, что за те несколько секунд, которые нужны расширившемуся воздуху для прохождения через теплообменник и другие аппараты установки, его температура повышается с — 192 градусов почти до температуры окружающего пространства. Почти весь холод, полученный воздухом в детандере и расширительной камере, передается им на обратном пути встречному потоку воздуха.
Тщательная тепловая изоляция всех аппаратов установки не позволяет холоду уходить в атмосферу. Такое сбережение холода позволяет получить больше жидкого воздуха и уменьшает расход энергии на его ожижение.
ОТ ВЫСОКОГО ДАВЛЕНИЯ — К НИЗКОМУ
Широко распространенные установки для получения жидкого воздуха требуют применения громоздких поршневых компрессоров, в которых атмосферный воздух сжимается до нескольких десятков и даже сотен атмосфер. Естественно поэтому, что производительность установок глубокого холода ограничивается, прежде всего, размерами компрессоров. Очень трудно построить сложный поршневой компрессор, дающий большое количество воздуха высокого давления.
Использование воздуха, сжатого до высокого давления имеет и другие существенные недостатки. Все детали установок глубокого холода — трубы, арматура и т. д. — должны обладать высокой прочностью. Поэтому многие из этих деталей делаются массивными. Для их изготовления приходится расходовать много высококачественных металлов.
В начале текущего столетия получили распространение турбинные механизмы, в которых возвратно-поступательное движение основных деталей заменялось вращением. Небольшие по размерам и высокопроизводительные турбокомпрессоры оказались значительно удобнее громоздких поршневых машин в тех случаях, когда требовалось сжимать газ до сравнительно небольших давлений, в 6-10 атмосфер. Многие из металлургов помнят гигантские поршневые компрессоры недавнего прошлого, применявшиеся для вдувания воздуха в доменную печь. Теперь эти сложные и уродливые механизмы повсеместно заменены небольшими турбовоздуходувками, занимающими мало места и исключительно надежными в работе.
Появление турбинных машин заставило ученых задуматься над созданием установок глубокого холода, работающих на низком давлении воздуха. Почти 50 лет назад английский физик Релей пытался использовать турбину для получения холода. Однако из этого ничего не вышло. Турбинный механизм, заменивший поршневую расширительную машину — детандер, имел крайне низкий коэффициент полезного действия. Он не давал возможности получить столько холода, сколько требовалось для экономичного сжижения воздуха.
Советский академик П. Л. Капица тщательно проанализировал неудачи Релея и других исследователей. Ему удалось установить их ошибку. Все расчеты турбинных машин производились применительно к работе с паром. В условиях паровой турбины потери энергии, зависящие от плотности пара, были настолько малы, что не принимались во внимание. Однако исследования холодильных турбин показали, что в условиях глубокого холода эти потери резко возрастают. Воздух, охлажденный до низкой температуры, становится настолько плотным, что по некоторым своим физическим свойствам скорее похож на жидкость, чем на пар. Все это привело к мысли обращаться с воздухом, охлажденным до низкой температуры, не как с газом, а как с жидкостью. Таким образом, и турбодетандер, сконструированный П. Л. Капицей, был построен по образцу водяной турбины, а не по образцу паровой.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.
…Люди научились точно учитывать время, когда развилась астрономия — наука о небесных светилах. Только благодаря астрономии мы умеем точно ответить на вопросы: «который час?», «какое сегодня число?», так как эта наука дала правила выверки часов и правила счета дней и годов, то есть то, что называется календарем. Объяснению этих правил и посвящена предлагаемая брошюра.
В брошюре Г. И. Покровского «Наука и техника в современных войнах» говорится о большой роли современной науки и техники в военном деле. Автор рассматривает важнейшие проблемы естественных и технических наук, связанные с военным делом. Брошюра не претендует на полноту освещения затронутых в ней вопросов, на всестороннее их рассмотрение. Автор стремился дать материал для суждений на эту тему, помочь военнослужащим в развитии творческой мысли и в самостоятельной работе по обобщению опыта учебы, воспитания и боевой подготовки, в выработке смелого, верного научного предвидения, чтобы никакие неожиданности не могли застать их врасплох.Брошюра рассчитана на офицеров Советской Армии, Авиации и Флота.
В последние годы развития радиотехники возникло большое число новых применений радио. Этот период, по словам видного советского радиоспециалиста академика А.И. Берга, является «началом эпохи радиоэлектроники, так как именно в эти годы началось широчайшее внедрение радиоэлектронных методов во все отрасли науки, техники и народного хозяйства»…