Очень общая метрология - [41]
Условия измерения можно разделить на две группы. Первая группа — это другие параметры объекта или сигнала. Например, вольтметр предназначен для измерения переменного напряжения частоты 45–55 герц синусоидальной формы. При выходе частоты за эти пределы или при существенном отклонении формы от синусоидальной возникает дополнительная погрешность. Вторая группа внешних условий — это «настоящие» внешние условия, например температура, давление, влажность, освещенность. Они тоже могут влиять на результаты измерений и в мануалах обычно оговорено, в каких условиях должны вестись измерения и какова будет дополнительная погрешность, если нагреть вольтметр до 300 °C или погрузить на дно в районе Марианской впадины.
Специфический вид погрешностей возникает при уменьшении времени, отведенного на измерение, в частности, при увеличении частоты измерений. Прибор, всегда имеющий ограничение по времени реакции хотя бы на принципиальном уровне (он должен получить информацию) не успевает правильно измерить. Эти погрешности называются динамическими.
Погрешности: классификация по представлениям
Погрешность мы можем представить в разном виде. Простейший вариант — однако имеющий название, нам же надо все называть — абсолютная погрешность. Это отличие измеренного от того самого, стыдливо названного выше «условным». Напряжение 220 ± 5 В. Иногда важно не насколько мы можем ошибиться, а много ли это по отношению к измеренному. Стало быть, напряжение 220 В ± 2,5 %. Это называется относительная погрешность.
Заметим, что одна величина так легко и просто переводится в другую, что с точки зрения вычислений не было никакой нужды вводить две величины. Причина, как мне кажется, чисто психологическая. Один человек говорит: мне добавили к ставке $ 100, другой — мне дали $ 1100, третий — мне добавили 10 %. Где в этим списке Вы, читатель? Второй — это с короткой исторической памятью, ему важно, что есть, а не что было. Первому важно отношение, «сколько дали». Третьему — насколько лучше он станет жить.
Примечание 1: лучше жить человек будет не на $ 100, а именно на 10 %, потому что дополнительная сумма скорее размажется по всем статьям расходов, чем пойдет только на увеселения. Примечание 2: человек в разных сферах деятельности может придерживаться разного подхода, например, третьего на работе и в расходах и первого или второго (я — скорее второго) в личной жизни.
В метрологии применяется еще термин «приведенная погрешность». Представим себе, что вольтметр измеряет напряжения от 0 до 250 В, причем погрешность постоянна и равна 5 В. В этом случае абсолютная погрешность и будет 5 В, относительная зависит от реально измеряемой величины (2 % — если 250 В, 5 % — если 100 В, 10 % — если 50 В, чуете, что будет дальше?), а приведенная погрешность будет именно 2 %: это относительная погрешность на конце шкалы. Если шкала прибор начинается не с 0, то берется не конец, а разность конца и — а вы как думаете? — начала.
Погрешности: классификация по «устройству»
Источников погрешностей великое множество, но большинство из них действует либо сдвигая измеряемую величину на сколько-то, либо умножая ее на сколько-то. При этом умножение может быть и на величину, меньшую единицы, то есть не «умножая», а «умаляя». Примечание это необходимо потому, что в не столь давние времена церковь сильно возражала против дробей, поскольку при умножении на некоторые дроби величина не «умножалась», а «умалялась». Поскольку не известно, не будет ли к моменту издания этой книги РПЦ рулить преподаванием метрологии, сделано это примечание.
Так вот, первая погрешность называется аддитивной, а вторая мультипликативной. А смешанная погрешность называется почему-то смешанной. Видимо, метрологам не хватило знания латыни.
Но главное деление погрешностей — это деление на систематические и случайные. Смысл кажется вполне понятным из названий, но на самом деле он не понятен. Если верить физике, то истинно случайное — это область действия квантовых закономерностей, от обычной метрологии это достаточно далеко (хотя эталоны все больше становятся квантовыми). Хочется сказать крамолу — что случайные погрешности — это просто погрешности, причина которых нам не ясна. Отчасти это так, но важно еще то, что у того, что мы называем случайными погрешностями, обычно много сравнимых по мощности причин, действующих независимо. Это не случайно — если бы какая-то причина превалировала, мы бы ее раскусили и объявили систематической. А если причин много и они сравнимы и независимы, то формируется определенная картина: распределение погрешностей подчиняется так называемому «нормальному распределению», симметричной функции определенной формы. Симметричность позволяет путем вычисления среднего многократных измерений уменьшать погрешность, а знание функции распределения позволяет оценить достижимую точность.
Можно представить себе ситуацию случайной несимметричной погрешности. Скажем, данный прибор сильнее завышает, нежели занижает показания. Тогда, измерив 220 вольт, мы будем вынуждены сказать, что напряжение равно 220 + 5 — 10 В, то есть лежит на отрезке 210–225. Конечно, такая ситуация уже менее случайна, нежели стандартная «случайная» и человечьим голосом просит — разберитесь во мне, определите мой источник.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью.
К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.
Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.
Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.