Очень общая метрология - [17]

Шрифт
Интервал

Экзогенный фактор — это потребности других областей науки и техники к метрологии. Эти потребности можно классифицировать аналогично сказанному выше:

— на краю или вне освоенного диапазона,

— с большей, нежели достигнутая, точностью,

— при необычных значениях других параметров того же объекта или сигнала,

— за малое время (с высокой скоростью) или с высокой частотой повторения,

— с особо малым влиянием на объект,

— в особых внешних условия,

— измерения на новом объекте,

— и наконец, измерения новых величин.

Измерения не теми приборами мы в этот список включать из скромности не будем. Они, конечно, требуют изощренности мышления, особо свойственной, если верить легендам, российским инженерам, но измерение напряжения амперметром все-таки маргинально.

Основная история метрологии — это история работы по увеличению точности измерений, расширению списка измеряемых величин и условий измерения. Сначала обсудим точность. Есть два варианта — если объектом заботы метрологов являются только приборы и если объектом заботы являются эталоны и приборы. Например, по первому варианту иногда работает человек — измеряя степень влюбленности учащением пульса, мы не предъявляем человеку сначала эталон. Не занимается эталонами и, так сказать, полевая метрология — метрология в цеху и лаборатории физика. Также не заморачиваясь проблемой эталонов работает метрология, если она пользуется естественными эталонами и полагает их неизменными по определению. В этом случае метролог обеспечивает точность приборов посредством поверок, то есть сличения показаний прибора с показаниями более точного прибора. Чем стабильнее прибор, тем реже нужны поверки, поэтому иногда точность и стабильность даже упоминают в одном ряду и говорят: «точность и стабильность приборов».

По второму варианту, заботясь и об эталонах, и о приборах работает метрология, когда она пользуется искусственными эталонами — метровой палкой и килограммовой гирей. Или когда мы сравниваем объекты, интуитивно полагая, что какой-то из них — идеал, «эталон». Например, разговаривая об уровне жизни, мы принимаем во внимание и то, как мы жили вчера, и как наши соседи живут сейчас. Принимая что-то из этого за то ли идеал, то ли эталон, то ли за мишень для полива помоями. Также, когда метрология пользуется естественными эталонами, но понимает, что они могут изменяться и под действием внешних причин, и с течением времени. В этом случае проблемами метрологии будут не только увеличение стабильности и точности средств измерения, но и обеспечение идентичности того, что должно быть идентичным (эталонов) и удобства передачи единиц измерения (поверки).

Стабильность эталона — вещь, интуитивно предполагаемая физиком, если он не занимается стабильностью мировых констант и не работает с метрологами, то есть «просто» измеряет что-то свое. Метролог всегда понимает, что эталон может быть не стабилен. Сами же причины нестабильности более понятны физику. Например, нестабильность эталона килограмма может быть следствием сорбции, окисления, диффузии, испарения, падения пылинок. Поэтому сейчас рассматривается возможность перехода на «естественный» эталон — массу атома (через вес кремниевого шара определенного размера). Естественный эталон такого типа (переданный через макроскопическое тело) тоже может «плыть», если плывут фундаментальные константы, но по крайней мере он всегда может быть повторен. Нестабильность эталонов замечается по изменению различий между ними. Возможные причины нестабильности эталонов — интересный физический вопрос. Метрология начала с естественных эталонов (размер частей тела человека), потом частично перешла к искусственным (метр, килограмм), сейчас возвращается к естественным. Причины эволюции — погоня за стабильностью и легкостью повторения и передачи. Новые естественные эталоны (длины, времени, массы), их можно назвать «естественные эталоны второго поколения», базируются на свойствах атомов, на «естественной дискретности», то есть квантуемости мира. Некоторые из этих атомных эталонов намного меньше тех размеров, с которыми обычно приходится иметь дело, поэтому необходима масштабирующая цепь устройств. Такие цепи существуют для времени и длины, а для массы — пока нет. Поэтому ведется разработка комбинированного атомного эталона — через массу атома и эталон длины — в виде шара точного диаметра из чистого (изотопно-чистого!) кремния. Для некоторых возможных (и, возможно, перспективных) атомных эталонов масштабирующие цепи не нужны, например, для эталона напряжения на квантовом эффекте Джозефсона и сопротивления — на квантовом эффекте Холла.

Роль физической «простоты» эталона состоит не в отсутствии влияний — и поэтому высокой стабильности, а в известности, с точки зрения физики, возможных влияний. Отдельно можно рассмотреть проблему постоянства мировых констант, которая вообще относится к сфере физики, но успешно граничит с метрологией.

Третий двигатель метрологии — это измерения новых величин. Тут можно спросить, а откуда вообще берутся «новые величины»? На первый взгляд в физике величины задаются формулой или методом измерений, а в полугуманитарных областях вроде социологии — мутными рассуждениями. На самом же деле ситуация не столь черно-белая.


Еще от автора Леонид Александрович Ашкинази
Уровень ноль

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Копирайт

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Инструкция для путешественника во времени

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Все, всегда

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Исход

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Путешествие восьмое, или Как Трурль обеспечил бесконечность существования Вселенной

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.