Объясняя мир. Истоки современной науки - [90]
Кстати, первая серьезная оценка размеров Солнечной системы была проведена в 1672 г. Жаном Рише и Джованни Доменико Кассини. Они измерили расстояние до Марса, наблюдая разницу в направлении на Марс из Парижа и Кайенны. Поскольку соотношения расстояний от планет до Солнца уже были известны из теории Коперника, таким образом, они получили и расстояние от Земли до Солнца. В современных единицах их результат составлял 140 млн км, что достаточно близко к современному значению в 149 598 500 млн км для среднего расстояния. Более точные измерения были проведены позже путем сравнения наблюдений из различных точек Земли прохождений Венеры по диску Солнца в 1761 и 1769 гг., что дало расстояние между Землей и Солнцем в 153 млн км{266}.
В 1797–1798 гг. Генри Кавендиш наконец сумел измерить силу притяжения между двумя телами в лабораторных условиях, из чего стало возможным вывести значение G. Но Кавендиш вместо этого, используя хорошо известное значение ускорения свободного падения в гравитационном поле Земли у ее поверхности (9,8 м/с²) и известное значение объема Земли, высчитал, что средняя плотность Земли в 5,48 раз превышает плотность воды.
Это соответствовало исторически сложившейся в физике практике – оформлять полученные результаты как отношения или пропорции, а не определенные величины. Например, как мы уже видели, Галилей доказал, что расстояние, пройденное свободно падающими на поверхность Земли телами, пропорционально квадрату времени, но он никогда не говорил, что постоянный множитель при квадрате времени, который дает пройденное расстояние, равен 9,8 м/с за каждую секунду. Как минимум это было связано с тем, что не существовало универсальных единиц измерения длины. Галилей мог получить отношение ускорения к силе тяжести в столько-то локтей в секунду, но что бы это говорило англичанину или даже итальянцу, живущему за пределами Тосканы? Международная стандартизация единиц длины и массы{267} началась в 1742 г., когда Лондонское королевское общество послало во французскую Академию наук две линейки, размеченные стандартными английскими дюймами. Французы разметили эти линейки своими единицами длины и отослали обратно в Лондон. Но общепринятая система единиц измерения появилась только в 1799 г., когда международную метрическую систему начали постепенно принимать в разных странах. Сегодня мы говорим, что G составляет 66,74 триллионных м³/с² на килограмм. Это означает, что небольшое тело массой один килограмм на расстоянии одного метра производит гравитационное ускорение в 66,74 триллионных метра в секунду за каждую секунду.
После изложения теорий движения и притяжения Ньютон в «Математических началах» переходит к разработке некоторых следствий, которые выходят далеко за рамки трех законов Кеплера. Например, в Предложении 14 он объясняет прецессию перигелия орбит планет (для Земли), измеренную аз-Заркали, хотя сам Ньютон не пытается провести количественные вычисления.
В Предложении 19 Ньютон замечает, что все планеты должны быть сплющены у полюсов, поскольку их вращение производит центробежную силу, которая сильнее всего у экватора и уменьшается к полюсам. Например, вращение Земли создает центростремительное ускорение, на экваторе равное 0,034 м/с за секунду. Сравним эту величину с ускорением свободного падения – 9,8 м/с за секунду: центробежная сила, создаваемая вращением Земли, намного слабее силы притяжения, но полностью пренебречь ею нельзя, а Земля действительно имеет почти шаровидную форму, но слегка сплющена у полюсов. Наблюдения в 1740-х гг. в конце концов доказали, что один и тот же маятник раскачивается на экваторе медленнее, чем на более высоких широтах, в точности, как и ожидалось, поскольку на экваторе маятник находится немного дальше от центра Земли, сплющенной у полюсов.
В Предложении 39 Ньютон доказывает, что воздействие силы тяготения на сплющенную у полюсов Землю вызывает прецессию ее оси вращения, ту самую «прецессию равноденствий», которую впервые заметил Гиппарх (у Ньютона был свой особый интерес к этой прецессии: соотнося ее значения с древними наблюдениями звезд, он пытался установить даты предполагаемых исторических событий, например, путешествия Ясона и аргонавтов){268}. В первом издании «Математических начал» Ньютон приводит свои расчеты, которые показали, что доля Солнца в годичной прецессии составляет 6,82° дуги, а воздействие со стороны Луны больше в 6,3 раза, что дает общие точки равноденствия в 50" дуги за год, и это идеально согласуется с годовой прецессией в 50", измеренной к тому времени и близкой к современному значению в 50,375". Это был впечатляющий результат, но позднее Ньютон понял, что найденная им величина прецессии под влиянием Солнца, а значит, и ее вклад в общую прецессию был в 1,6 раза занижен. Во втором издании он скорректировал величину воздействия со стороны Солнца, а также соотношение вкладов Солнца и Луны в общий эффект прецессии, так что их сумма опять же оказалась близкой к 50" и осталась в согласии с наблюдательными данными{269}. Ньютон получил верное качественное объяснение прецессии равноденствий, и его расчет дал ему величину правильного порядка для этого явления, но чтобы добиться необходимого согласия с наблюдениями, ему пришлось прибегнуть ко многим ухищрениям.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Эта книга адресована сразу трем аудиториям – будущим журналистам, решившим посвятить себя научной журналистике, широкой публике и тем людям, которые делают науку – ученым. По сути дела, это итог почти полувековой работы журналиста, пишущего о науке, и редактора научно-популярного и научно-художественного журнала. Название книги «Научная журналистика как составная часть знаний и умений любого ученого» возникло не случайно. Так назывался курс лекций, который автор книги читал в течение последних десяти лет в разных странах и на разных языках.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.