Объясняя мир. Истоки современной науки - [9]

Шрифт
Интервал

Возможно, первым явлением, которое древние изучали с помощью арифметических методов, была музыка. Это описано в работах последователей Пифагора. Уроженец населенного ионийцами острова Самос Пифагор уехал в южную Италию примерно в 530 г. до н. э. Там, в греческом городе Кротоне, он основал культ, который просуществовал до конца IV в. до н. э.

Слово «культ» в данном случае кажется мне подходящим. Ранние пифагорейцы не оставили никаких записей, но, по свидетельству других авторов{19}, они верили в переселение душ. Пифагорейцы должны были носить белые одежды, им было запрещено есть бобы из-за того, что они напоминают человеческие зародыши. Они организовали нечто вроде теократического общества, и под их управлением жители Кротона в 510 г. до н. э. разрушили соседний город Сибарис.

Для истории науки важно, что кроме всего вышесказанного пифагорейцы развили интерес к математике. В «Метафизике» Аристотель пишет: «… так называемые пифагорейцы, занявшись математическими науками, впервые двинули их вперед и, воспитавшись на них, стали считать их начала началами всех вещей»{20}.

Возможно, их особое внимание к математике было вызвано наблюдением за музыкой. Они заметили, что если во время игры на струнном инструменте щипнуть одновременно две струны одинаковой толщины, состава и натяжения, то приятный звук получается только в том случае, если длины струн относятся друг к другу как соотношение небольших целых чисел. Самый простой случай – когда одна струна наполовину короче второй. Сейчас мы говорим, что звучание двух струн расходится на октаву, и мы обозначаем издаваемый ими звук одной и той же буквой алфавита. Если одна струна составляет две трети длины другой, то проигрываются две ноты, интервал между которыми составляет квинту, имеющую достаточно гармоничное звучание. Если одна струна составляет три четверти длины другой, они производят гармоничное звучание, которое называется квартой. Напротив, если длины струн не соотносятся как небольшие целые числа (например, длина одной струны составляет 100 000/314 159 длины другой) или вообще не попадают в множество целых чисел, то получается неприятный, режущий ухо звук. Сейчас мы знаем, что для этого есть две причины: частота звуковых волн, производимых двумя струнами одновременно, и совпадение обертонов, производимых каждой струной (см. техническое замечание 3). Пифагорейцы ничего этого не понимали, как и никто другой, пока в XVII в. не появилась работа французского естествоиспытателя-священника Марена Мерсенна. Вместо этого, по Аристотелю, пифагорейцы «… всю вселенную признали гармонией и числом»{21}. Эта идея имела долгую жизнь. Например, Цицерон в своем диалоге «О государстве» рассказывает историю о том, как великий римский полководец Сципион Африканский знакомит своего внука с музыкой сфер.

Большего прогресса пифагорейцы достигли, скорее, в чистой математике, чем в физике. Все знают теорему Пифагора о том, что площадь квадрата, одной из сторон которого является гипотенуза прямоугольного треугольника, равна сумме площадей двух квадратов, стороны которых являются катетами этого треугольника. Но неизвестно, кто именно из пифагорейцев доказал эту теорему и как он это сделал. Ее можно очень просто доказать, основываясь на теории соотношений, которая принадлежит пифагорейцу Архиту Тарентскому, современнику Платона (см. техническое замечание 4). В теореме 46 Первой книги «Начал» Евклида приводится более сложное доказательство. Кстати, Архит решил знаменитую задачу, которая до него оставалась нерешенной: как, имея куб и используя чисто геометрические методы, построить куб, в два раза больший по объему.

Теорема Пифагора ведет к другому великому открытию о том, что геометрические построения могут привести к соотношениям, которые не могут быть выражены частным от деления целых чисел. Если каждый катет прямоугольного треугольника имеет длину, равную единице (неважно, в каких единицах измерения), то сумма площадей двух квадратов, сторонами которого являются эти катеты, составляет 1² + 1² = 2. Тогда в соответствии с теоремой Пифагора длина гипотенузы должна выражаться числом, квадрат которого равен 2, но легко увидеть, что число, квадрат которого равен 2, не может быть выражено как соотношение целых чисел (см. техническое замечание 5). Доказательство этого дается в Десятой книге «Начал» Евклида. Ранее о нем говорит Аристотель в «Первой аналитике»{22} в качестве примера reductio ad impossibile[3], не давая ссылку на оригинальный источник. Существует легенда о том, что это открытие принадлежит пифагорейцу Гиппасу, который, возможно, родился в городе Метапонте на юге Италии и был изгнан или убит пифагорейцами за разглашение этого открытия.

Сегодня мы можем описать это открытие следующим образом: такие числа, как квадратный корень из двух, являются иррациональными – они не могут быть выражены как отношение целых чисел. Согласно Платону{23}, Феодор Киренский показал, что квадратные корни из 3, 5, 6,…, 15, 17 и т. д. (и вдобавок, хотя Платон этого и не говорит, квадратные корни из всех целых чисел, кроме 1, 4, 9, 16 и т. д., которые являются квадратами целых чисел) иррациональны в том же смысле. Но древние греки не выражали эту мысль таким образом. Скорее, судя по переводу Платона, они говорили о сторонах квадратов, площадь которых равна 2, 3, 5 и т. д., несоизмеримых единице. У древних греков не было понятия о каких-либо числах, кроме рациональных, поэтому для них такое число, как квадратный корень из двух, могло быть представлено только геометрически, что затрудняло развитие арифметики.


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Первые три минуты

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.